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A b s t r a c t  

A notion of an algebroid - a generalization of a Lie algebroid structure on a vector bundle is 
introduced. We show that many objects of the differential calculus on a manifold M associated 
with the canonical Lie algebroid structure on TM can be obtained in the framework of a general 
algebroid. Also a compatibility condition which leads, in general, to a concept of a bialgebroid. 
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O. I n t r o d u c t i o n  

The classical Cartan differential calculus on a manifold M, including the exterior deriva- 

tive d, the Lie derivative E, etc., can be viewed as being associated with the canonical Lie 

algebroid structure on TM represented by the Lie bracket of vector fields. Lie algebroids 

have been introduced repeatedly into differential geometry since the early 1950s, and also 

into physics and algebra, under a wide variety of names. They have been also recognized as 

infinitesimal objects for Lie groupoids [ 18]. We refer to [ 14] for basic definitions, examples, 

and an extensive list of publications in these directions. 
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Being related to many areas of  geometry, like connection theory, cohomology theory, 

invariants of  foliations and pseudogroups, symplectic and Poisson geometry, etc., Lie alge- 

broids became recently an object of  extensive studies. 

What we propose in this paper is to find out what are, in fact, the structures responsible 

for the presence of  a version of the Cartan differential calculus on a vector bundle and how 

are they related. This leads to the notion of  a general algebroid. 

It is well known that there exists a one-one correspondence between Lie algebroid struc- 

tures on a vector bundle r : E --+ M and linear Poisson structures on the dual vector 

bundle Jr : E* --+ M. This correspondence can be extended to much wider class of  binary 

operations (brackets) on sections of  r on one side, and linear contravariant 2-tensor fields 

on E* on the other side. It is not necessary for these operations to be skew-symmetric or 

to satisfy the Jacobi identity. The vector bundle r together with a bracket operation, or 

the equivalent contravariant 2-tensor field, will be called an algebroid. This terminology 

is justified by the fact that contravariant 2-tensor fields define certain binary operations on 

the space C ~ ( E * ) .  The algebroids constructed in this way include all finite-dimensional 

algebras over real numbers (e.g. associative, Jordan, etc.) as particular examples. The base 

manifold M is in these cases a single point. 

Searching for structures which give us differential calculi on vector bundles, we look at 

objects of  analytical mechanics as related to the Lie algebroid structure of  the tangent bundle. 

The tangent bundle TM is the canonical Lie algebroid associated with the canonical 

Poisson tensor (symplectic form) on T*M.  Other canonical objects associated with TM 

are: the canonical isomorphism 

aM : T T * M  ~ T*TM 

of  double vector bundles, discovered by Tulczyjew [19], dual to the well-known flip 

~CM : T T M  > TTM, 

and the tangent lift dT of  tensor fields on M to tensor fields on TM (cf. [5,17,22]). 

The algebroid structure of  the tangent bundle is not used in analytical mechanics directly 

via its Lie bracket of vector fields. In the Lagrange formulation of  the infinitesimal dynamics 

one uses the mentioned isomorphism aM. The canonical symplectic structure is the basic 

for the Hamiltonian mechanics, but to obtain Euler-Lagrange equation we use the complete 

tangent lift dT. Following Weinstein [21] and Libermann [12] also Lie algebroids other 
than that of  the tangent bundle can be used in the variational formulation of  the dynamics. 

It is important to know if one can characterize an algebroid structure directly in terms of  

objects like dT, OeM, etc. 
The search for a basis of  the Cartan differential calculus on a vector bundle is not the only 

reason for studying general algebroids. We are motivated also by the fact that the interest in 

Lie-like, but not skew-symmetric, or not satisfying the Jacobi identity, structures has been 
growing in last years. 

For example, structures more general than Lie bialgebras appear as semi-classical limits 
of  quasi-Hopf algebras [3]. The general theory of  such objects, known under the name of  

Jacobian quasi-bialgebras, was developed by Kosmann-Schwarzbach [91. They form the 
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infinitesimal part of quasi-Poisson Lie groups. The dual objects are Poisson quasi-groups, 

so that their infinitesimal parts are quasi-Lie algebras, i.e. 'not quite Lie algebras'. We are 

sure all this has an algebroid counterpart in the spirit of our work. Some examples are 

sketched in Section 9. 
Also in the theory of webs one can find objects similar to Lie groupoids but not associative 

in general [4]. We think that their infinitesimal parts are algebroids in our sense. 
Let us also mention the concept of Loday algebras, i.e. Leibniz algebras in the sense of 

Loday [13] (cf. also [10]) which are 'non-skew-symmetric Lie algebras'. 
Finally, let us recall the use of Nijenhuis tensors in defining deformed Lie algebroid 

slructures on tangent bundles. Considering properties of (1, 1)-tensors less restrictive than 

vanishing of the Nijenhuis torsion, we get algebroids in the sense we propose. 

All this provides another motivation for our work. 

The paper is organized as follows. 

In Sections 1-3 we show that objects similar to aM, KM, and dT can be associated with 
any algebroid structure. Each of these objects separately provides a complete description 

of the algebroid structure. Other constructions, known for Lie algebroids are extended to 
general algebroids. We define the tangent and the cotangent lifts of an algebroid in Section 4 

and the Lie derivative in Section 5. We find an operation which acts as the exterior derivative 

in a limited way. Conditions for an algebroid to be a Lie algebroid are formulated in terms 

of these objects (Theorems 8 and 10). 
The discussion of algebroids is extended to bialgebroids in Section 6. Alternative defini- 

tions of bialgebroids are considered. A link to the original definition of Mackenzie and Xu 

[ 15] is established by Theorem 13. 
In Sections 7 and 8 we discuss the algebroid constructions in the important case of an 

algebroid defined by a linear connection on the tangent bundle T M .  The Lie derivative for 

this algebroid coincides with the covariant derivative. The algebroid of a linear connection 

is not skew-symmetric and, consequently, is not a Lie algebroid. 
The canonical example of an algebroid is the Lie algebroid A(G)  of a Lie groupoid G. 

The Lie algebroid structure on A(G)  is obtained from the canonical Lie algebroid structure 
of the tangent bundle TG.  Thus, one can expect that objects of the Lie algebroid A(G)  

can be obtained directly from the corresponding objects of the canonical algebroid TG. We 
show in Section 9 how the algebroid lift can be obtained from the tangent lift dT and we 

discuss also the relation between the lift dT and the lifting of multiplicative vector fields, 
described in [ 16]. All this can be done (at least partially) for pre- (or quasi- ; the terminology 

is not fixed yet) Lie groupoids G, which are structures weaker than Lie groupoids (we do 
not assume associativity). Having in mind some natural examples of this kind related to 

quasi-Poisson Lie groups, webs, quasi-Nijenhuis tensors, etc., we are planning to discuss 
these problems in a further publication. 

O. 1. Notation 

Let M be a smooth manifold. We denote by rM : TM ~ M the tangent vector bundle 

and by rrM : T*M --+ M the cotangent vector bundle. 
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Let r : E ~ M be a vector bundle and let zr : E* --> M be the dual bundle. We use the 

following notation for tensor bundles: 

r ®k • E ®M " ' "  ®M E = ®/'M(E) ) M, 

r A/' : E AM " "  AM E = AkM(E) ) M, 

the module of  sections over C ~ ( M ) :  

&(r) = r(&M(E)), Ok(r) = F(AkM(E)), 

and the corresponding tensor algebras 

®( r )  = G I , ~  ® (r)k(E) ,  

,t,(r) = Gk~z~k( r ) ,  

~ ( r )  = @k~z ®k (r @ rr) = ~kcZ~k(r ) ,  

where 

r @ z r  : E @ E *  ) M 

is the Whitney sum. In particular, 

G° ( r )  = q~°(r) = ~ ° ( r )  = CC~(M) 

and 

®k(r)  = q~k(r) = ~k(r )  = {0} fo rk  < O. 

By (., .), we denote the canonical pairing between E and E* as well as pairings between 

the corresponding tensor bundles, e.g., 

(.,-) • ®kM(E) x M ®kg(E*) ) ~, 

and pairings of  sections, e.g., 

(., .) : ®k(r)  x ®kOr) > C°°(M). 

Let K be a section of  a tensor bundle ®kM(E), K e ®k(r).  We denote by , (K)  the corre- 

sponding linear function on the dual bundle 

t ( K )  : ®kM(E *) ---> 

:ae--> ( K ( m ) , a ) ,  m = z r ® k ( a ) .  (1) 

For a section X of  r (X E ®1 (r)), we have the usual operators of  insertion 

ilx : ® k + l ( z r )  ~ ® k ( r r )  
/ 

V 

:Izl ® " "  ®/zk+l ~ (X, # / )#1® "'" ®/zk+l, (2) 

/ 
where/zj  ~ ®1 (rr) and v stands for the omission. We denote by ix the derivation of  the 
tensor algebra ® (zr): 
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k+l 

i x ( p l  ® - . .  @ Pk+l )  --  Z ( - 1 ) / + l i t x ( # j  ® ' - -  ® Pk+l) .  
/=l  

Similarly, for a section K of  E* ®M E, we have the derivation iK of  the full tensor algebra 
-~ ( r )  determined by 

it~®x(Y) = - ( /~ ,  Y)X,  ii~®x(v) = (v, X)p ,  i u ® x ( f )  = 0 

for X. Y E ® l ( r ) , / z ,  v C ®l (Tr ) ,  f C C ~ ( M ) .  

Let A c ®2(r ) .  We denote by A t h e  mapping 

A ' E * - - +  E, A o p = i ) , A .  

0.2. Local coordinates 

Let (x"), a = 1 . . . . .  n, be a coordinate system in M. We introduce the induced coordinate 
systems 

(x",2~ t~) in TM, (x",pb) in T*M. 

Let (et . . . . .  era) be a basis of  local sections of  r • E --+ M and let (e,  I . . . . .  e~') be the dual 

basis of  local sections of  Jr : E* ~ M. We have the induced coordinate systems: 

(x", yi), yi =l(ei , )  i n E ,  (x",~i) ,  ~i = t ( e i )  i n E * ,  

" ' F I "  (x". v ' t ' ' )  in ®M E, (x", ~ i l " ' i , )  in ®M E*, 

and 

(x", yi, 21,, 9j) in TE, (x", ~i, Job, ~j) in TE*, 

(X a, vit...i,, jcb, ~,jt"'jr) in T ®~t E, 

(x", yi PI,, r(i) in T'E, (x", ~i, PI,, (P J) in T'E*, 

rx" ~. ~ in r E*, (x", , r , ,~;~...,,, ® ~  y' rr#~...#,.) in ®E T*E, 

where J~i E {it . . . . .  n t} U {l . . . . .  m}. 

We have the canonical symplectic forms: 

coL-* = d p .  A dx a + d~0 i A d~i 

on T ' E *  and 

coL- = dpa A dx" + dJri A dy i 

on T* E, and the corresponding Poisson tensors 

AE* = Op,, A O,.,, + O~j A 0¢; and A E =- Ol,,, A O.v, -Jr- Or(i A Ovi. 

There is also a canonical isomorphism (cf. [8]) 

7~r : T ' E *  > T*E (3) 



116 J. Grabowski, P Urbahski /Journal of Geometry and Physics 31 (1999) 111-141 

being an anti-symplectomorphism and also an isomorphism of double vector bundles 

T ' E *  3% ~ T * E  

7r~, "~E id ~ E 
/ / / 

/ 

M id > M 

In local coordinates, Tgr is given by 

x a i , Y , Pb, 7rj) o ~ r  = ( xa ,  q 9i , - - P b ,  ~j).  

(4) 

1. Leibniz structures and algebroids 

Definition 1. A Leibniz structure is a pair (M, A), where M is a manifold and A is 

a contravariant 2-tensor field. A Leibniz structure defines the Leibniz bracket {., "}A on 

C~(M) by 

{f, g}A = (A, d f  ® dg). 

The bracket { , } is a bilinear operation satisfying the Leibniz rules 

{f, gh}A = {f, g}Ah + g{f, h}A, { fh,  g}A = {f, g}Ah + f{h ,  g}A. (5) 

A Leibniz structure is called skew-symmetric if the tensor A or, equivalently, the bracket 

{ , }A,is skew-symmetric. 

Remark.  A Leibniz bracket, which is skew-symmetric and satisfies the Jacobi identity is 

called a Poisson bracket and the corresponding tensor -  a Poisson structure. It is well known 

that Lie algebroid structures on a vector bundle E correspond to linear Poisson structures 

on  E* .  

A Leibniz structure A on E* is called linear if the corresponding mapping A : T ' E *  

TE* is a morphism of double vector bundles. 

Let r : E ~ M be a vector bundle. The commutative diagram 

T ' E *  A ~ TE* 

T * E  

(6) 
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describes a one-to-one correspondence between linear Leibniz structures A on E* and 

homomorphisms of double vector bundles (cf. [8]) 

T * E  ~ > Tff* 

M id ~ M 

(7) 

The core of a double vector bundle is the intersection of the kernels of the projections. 

It is obvious that the core of T*E (TE*) can be identified with T*M (E*). With these 

identifications the induced by e morphism of cores is a morphism 

e,. : T*M --+ E*. 

In local coordinates, every e as in (7) is of the form 

(x", ~ i ,  5:t', ~i) o e = (x a, rri, p~'(x)y k, c~)(x)yizrk + a~(x)pa) (8) 

and corresponds to the linear Leibniz tensor 

A~, = c~i(x)~kO~, ® Oqi + pi~ (x)O~, ® Ox,, - a)'(x)O~,, ® Oqi. (9) 

We have also 

(Xa,jcb) o e r = ( x a ,  p~)~(x)yk), (xa,~i)oec~-(Xa,Cr/)(x)ph).  

Remark.  In [7] by pseudo-Lie algebroids (resp. pre-Lie algebroids), we called the linear 
(resp. linear and skew-symmetric) Leibniz tensors on E*. Throughout this note the corre- 

sponding algebroid structures (represented by pairs (E, E) or, equivalently, by (E*, A~)) 
will be called simply algebroids (skew algebroids). Note also that the notion of a skew 
algebroid was introduced by Kosmann-Schwarzbach and Magri in [11] under the name of 
pre-Lie algebroid. The relation to the canonical definition of Lie algebroid is given by the 

following theorem. 

Theorem 1 [7]. An algebroid structure (E, ~) can be equivalently defined as a bilinear 
bracket [., .]~ on sections o f t  : E ---> M together with vector bundle morphisms a~:, a~ : 
E --+ T M  (left and right anchors) such that 

[ f X ,  gY]e = f ( a f  o X) (g )Y  - g(a~ o Y ) ( f ) X  + fg[X ,  Y]~ (10) 

for f ,  g ~ C~(M) ,  X, Y ~ ®l(r) .  
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The bracket and anchors are related to the Leibniz tensor Ae by the formulae 

t ( [X, Y]e) = { t(X),  t(Y)}A~, 

~r*(a~: o X( f ) )  = { t (X),  z~*f}A~, (11) 

rc*(a~ o X ( f ) )  = {n'*f, t(X)}A~. 

We have also a~ = er and a~ = (s,.)*. The algebroid (E,  e) is a Lie algebroid i f  and only 

i f  the tensor Ae is a Poisson tensor. 

The canonical example of a mapping s in the case of E = T M  is given by e = eM = 

~ t  1 - the inverse to the Tulczyjew isomorphism, which can be defined as the dual to the 

isomorphism of double vector bundles 

T T M  KM ~ T T M  

/ T M  id / , T M  / / 

M id > M 

(12) 

In general, the Leibniz structure map e is not an isomorphism and, consequently, its dual 

x -1 = e *r with respect to the right projection 

T E  ~ ~ T E  

~ ~ T M  

T M  / ~  , E  / 

M id ~ M 

is a relation and not a mapping. In this diagram Kr = 8r. 

Similarly as in [5], we can extend e to mappings 

e Or : ®~,T*E > T ® ~  E*, 

r ~> 0, as follows. We put, for r = 0, 

(13) 

s ® 0 : E  x ~ T ( M x  ~ ) = T M  x ~ x T o R = T M x  ~ x  R 

: (e, t) ~ (e,-(e), t, 0) (14) 

and, for r = 1, e® l = e. For r > 1, we apply the tangent functor to the tensor product map 

r 
( ~ r  : E* ×M "'" ×M E* > @M E 
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and we define ~®" by the commutativity of  the diagram 

TE*  XTM " ' 'XTM TE*  T®" ~ T ® ~  E* 

x d 
@r r ~< 

T * E  xe ... xE T * E  " + ~z;,ET E 

In local coordinates, we have 

x "  ~ .d', G . . . i , )  o E ®" , bil ...i~ , 

119 

(15) 

X k i a '  ) )  = ", rri,...i,, p~yk, Z ( c i . i , y  rqi,...j ' ,kh+,i ,  + ¢ri, rqi,...J,-,,,'j,+,...J,. • (16) 
I 

Of course, e ®" may be reduced to skew-symmetric (symmetric) tensors and, as in [5], we 

have also the commutative diagram 

c ®i x c ®(r-/) 
(T ®~  E*) XTM (T ,"C - ~ ,  ,~,I Is'* ) 

/ 

@ M / T 

T <"  E* -M 

(17) 

r - i  * (®~T*E)  xE (®s T E) 

r ®ET E 
C® r 

2. Leibniz relations 

In the following definition we adapt standard concepts of  the theory of  Poisson manifolds 

and Lie algebroids. 

Definition 2. A submanifold N of a Leibniz manifold (M, A) is called coisotropic if 

,4((TN) °) C TN,  where (TN) ° C T~vM is the annihilator of  TN C TM. A relation 

L C M1 x M2 between Leibniz manifolds (M1, A1) and (M2, A2) is a Leibniz relation if 

L is a coisotropic submanifold of  Leibniz manifold (M1 x M2, ( - A  i) x A2). 

Theorem 2. Let F : Ml --+ M2 be a differentiable mapping between Leibniz manifolds 

(M1, A I ) and (M2, A2). Then, A I and A2 are F-related if  and only if  the graph o f F  is a 

Leibniz relation. 

Proof. The proof is completely parallel to that in the Poisson case. [] 

Definition 3. Let ri : Ei --~ Mi be a vector bundle, i = 1, 2. Let ei be an algebroid 
structure on ri and let Ai be the corresponding Leibniz structure on E*. A vector bundle 

morphism 7z : El --+ E2 is an algebroid morphism if the dual relation 7z* : E* --* E~ is a 

Leibniz relation. 
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3. The algebroid lift d~- 

For a tensor field K 6 ®k (r),  we can define the vertical lift vr (K) 6 ®k (rE) (cf. [6,22]). 

In local coordinates, 

Vr( f i t"ke i l  ® . . .  ® e&) = f i l k ~ v i  I ® . . .  ® Oyi k . (18) 

A particular case of  the vertical lift is the lift vT(K) of a contravariant tensor field K on M 

into a contravariant tensor field on TM.  

L e m m a  1. Let (E, e) be an algebroidand let K ~ ®k(r) ,  k >~ O. Then 

t (vr (K))  = VT(t(K)) o e ®k. (19) 

Proof.  In local coordinates, both sides of  (19) are equal 

f i l  ...ik (x ):rril ...ik 

for k > 0. For a function f on M, we get 

t(Vr f ) ( e ,  t) = t f ( r ( e ) )  = t f ( rM(er(e) ) )  = VT(t(f)) o E0(e, t). [] 

It is well known (see [5,22]) that in the case of E = T M  we have also the tangent lift 

dT : ®(rM) --+ ®(rTM) which is a vT-derivation. It turns out that the presence of such a 
lift for a vector bundle is equivalent to the presence of  an algebroid structure. 

Theorem 3. Let (E, e) be an algebroid. For K ~ ®k(r), k ~ O, the equality 

t(d~-(K)) = dT(t(K)) o e ®k (20) 

defines the tensor field d~(K) E @k(rE) which is linear and the mapping 

d~-: ®(r )  > ®(rE)  

is a Vr-derivation of  degree O. In local coordinates, 

{ i a Of k ) 
d~-(f i(x)ei)  = fi(x)a~(X)Ox. + t y  Pi ( X ) ~ x . ( X ) +  c ~ i ( x ) y i f J ( x ) .  Oyk. (21) 

Conversely, if D : ®( r )  ~ ®(rE) is a vr-derivation of  degree 0 such that D(K)  is linear 
for each K ~ ®1 (r), then there is an algebroid structure e on r : E --+ M such that 
D =  d~. 

Proof. Since dT(t(K)) o e®k is a linear function on ® ~ T * E ,  it defines a unique tensor 
field dfr(K) ~ ®k(rE). In local coordinates, 

dT(t(fil '"ikeil ® " "  ® eik)) = dT(fi l ik~it . . , i~) 

Ofil'"iJ" Jfa~il "'ik -[- J "~tl ""lk" = ril "'ikk (22) 
OX a 
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Hence, 

dT( t ( f  i''''ik eit ® " "  ® elk)) o 8 ®k 

ofil ...i~ 
_ _  _ _  a i y r  " " r , i  . . o.a'yr,  

OX a Pi Y il...i~ + f~l '"~k Z ( c i , j l )  Y(ll"'Jl I r j l+l" ,h  -~- .it J l ' " j l  la 'Jl+l '"J ) 
I 

and 

(23) 

= fa (mo) D (x ° ) (e) = ~ (too) D (x a) (e). 

f ( m )  ---- f (mo)  + (xa fa)(m) 

for m E U and some fa ~ C°C(M). It is clear that fa(mo) = (Of/Oxa)(mo). 
Let e c E, r(e)  = m0. We have 

(Df ) (e )  = D ( f  (mo))(e) + D(xa)(e)vr( fa)(e)  + vr (xa ) (e )D( f , ) ( e )  

(26) 

• ' " a i d~(f ' l"tkei l  ® ' ' "  ® elk) -- o f i ' i k  OX a Pi Y Ovq Q' ' 'Qc3vik  

+fi,...ik ZO,.i,. ® . . . ® ( c / i ,  yiO,,i +a"O,'®...®O,.i~i, x , . (24) 
I 

Now, it is easy to see that d~-(K) is linear and that df r is a v~-derivation of  order 0. 

We can give another, more intrinsic, proof of the fact that df r is a vr-derivation. 
Let K 6 ®k(r),  L 6 ®/(r )  and let us consider J~ = t (K) o ®k, ~, = t(L) o ®/. and 

K ' ~ L  = ~ ' .  L as functions on (×kM+/E*) ×M (XlM). Since 

dT(KL)  = dTKVTL + vyK dyL 

(cf. [5]), we get 

dT(KL ) o (xk+le) = (dTt~ o (Xke))(VT ~ o (X/g))+(VT g o (xke))(dT ~ o (X/e)) 

and, in view of  Lemma 1, 

d~(K ® L) = d~r(K ) ® vr(L)  + v~(K) ® d~(L). 

To prove the converse, we use the method similar to the method used in the proof that 

derivations of  C°°(M) are given by vector fields. 

Let D : ® r  ---> ®(rE) be a vr-defivation of  degree zero. It follows that D " C~C(M) --> 
Coo (E) is also a vr-derivation. Consequently, 

D(1) = D(1 • 1) = D(1)vr(1)  + v , (1 )D(1)  = 2D(1) (25) 

and D(1) = 0. 

It is well known that for every m0 ~ M we can find local coordinates (x a) in a neigh- 

borhood U of  too, xa(mo) = 0, given by globally defined functions, such that for each 

f E C ~ ( M )  we have 
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We can apply this argument to every point m 6 U and coordinates x" - x" (m) and, since 

D(x ~' - x a (m)) = D(xa), we obtain the local formula 

Of 
D ( f )  = D(xa). (27) 

Ox a 

Let D(K) be linear for K E ®k(T). Then the functions D(x a) are linear on fibers of E 

and, consequently, we can write D(x a) = p~yJ for some functions p~' ~ C~(U),  and 

Of a 
D ( f )  = ~xaP ) yJ. 

Let (ei) be a basis of local sections of E. We have, due to linearity of D(ei), 

D(ei) = a['Ox. + c~i yJ Oyk, (28) 

where a/", c)i ~ C~(U).  Finally, the equality 

D( f i  ei) = D(f i )vr(e i )  + v~(f i)D(ei)  
I f O  i 

= ~xup~'yJOy, + ficfiyJOyk + fiayOx, (29) 

shows that, when restricted to functions and sections of E, the derivation D equals d~- for 
s as in (8) when acting on functions and sections of  E. But the vr-derivation D of  order 0 

is uniquely determined by its values on functions and on sections of E. [] 

T h e o r e m 4 .  For X, Y ~ ® ' ( r ) ,  

[vr(X), d~-(Y)] = vr([X, Y]e). (30) 

Proof.  Easy calculations in local coordinates. [] 

Corollary 1. For X ~ ®1 (r) and Y ~ ®k(r), we have 

[vr(X), d~-(Y)] = Vr([X, Y]s) 

and 

[vr(Y), d~-(X)] = v~([Y, Xle), 

where 

[X, Y~ ® . . .  ® Yk] = E Y ~  ® ' "  ® [X, Yi] ® ' "  ® Yk, 
i 

[Y~ ® " "  ® Yk, X] = E Y~ ® " "  ® [Y~' X] ® . . .  ® Yk, 
i 

and the formulae for [ , ]6 are similar. 

Proof. The proof follows directly from Theorem 4 and from the fact that d~- is a 
vr-derivation of order 0. [] 
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The algebroid lift d~ may be used to an alternative definition of the bracket [ , ]~ (cf. 

[5] for the case of the canonical Lie algebroid in the tangent bundle). 

Let X be a section of E. At  points of X ( M )  C E, we have the decomposit ion of T E  

into the horizontal (tangent to X ( M ) )  and the vertical part. For a vector field V on E, we 

denote by X * V  the unique section of E such that the vertical lift v~(X*V)  is, on X ( M ) ,  

the vertical part of V. 

T h e o r e m  5. Let ( E , s )  be an algebroid and let X, Y ¢ ®l  (r).  Then 

X*(d~Y)  = [X, Y]s. (31) 

Proof.  We have to prove that the vector field d~(Y) - vr ([X, Y]e) is tangent to X (M) C E, 

Let X = f i  ei and Y = giei, in local coordinates, and let s be as in (8). We have, according 

to (10), (18), and (21), 

d~(gJei)  - Vr([ f i  ei, gJej]s) = cf)yi gJOy~ 4- p~'v i 3gko~.~ + o'[' giOr, 
Ox a • 

• " ' a~iOg kO ~ a~iOf  kO 
- - ck j  f '  gJ Ov/. - -  Pi J ~ y + " cr g OX a v 

= a  i g Ox" + ~XaOyk . (32) 

since yi = f i  on X ( M ) .  It is clear that the vector fields 0v,, 4- (Ofk/Oxa)O,s are tangent to 

X ( M ) .  [] 

Let q9 • T*E --+ TE* be a morphism of vector bundles over E*. The vector bundle dual 

to rE* : TE* ~ E* can be identified (via ~ )  with the vector bundle T*r  • T*E --+ E* 

and vice versa. It follows that the dual to ~0 can be identified with a morphism 

~o + • T *E  -+  TE*.  (33) 

T h e o r e m  6. Let s be an algebroid structure as in (8). Then the morphism 

e + : T * E  ~ T E * ,  

dual to s with respect to the vector bundle structures over E* is again an algebroid structure 

on E. The corresponding Leibniz tensor Ae+ is the transposition o f  the tensor A,~. In local 

coordinates, 

(x", ~i, k h, ~i) o s + = (x a, zri, cr~'(x)y k, c~i(x)yizrk + PI'(x)Pa). (34) 

Proof .  The proof  is an immediate consequence of the general properties of a dual to a 

double vector bundle. We refer to [8,20] for the theory of duality in the category of double 

vector bundles. [] 

It follows from the general theory of  double vector bundles that (e+)r  = (e,.)* and (e + ),. = 

(e,.)*. Thus, we have the diagram 
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T * E  c+ ~TE* 

E ~TM 

E* //~ld , E *  

M id ~ M 

(35) 

We call an algebroid structure (E, e) skew-symmetric if e = - e  +, where the multipli- 
cation by - 1  is with respect to the vector bundle structure over E*. It is clearly equivalent 
to the fact that AE is skew-symmetric. Skew-symmetric algebroids are sometimes called 
pre-Lie algebroids [7,11]. 

4. The tangent and cotangent lifts of an algebroid 

The theory of the tangent and cotangent lifts of algebroids is perfectly analogous to that 
of Lie algebroids (see [2,6]). If e is an algebroid structure on r : E ---* M and AE is the 
corresponding Leibniz tensor on E*, the tangent lift dT(A~) is linear with respect to both 
vector bundle structures on TE* and, consequently, it defines algebroid structures on dual 
bundles: T ' E *  --+ E* and TE --+ TM, called respectively the cotangent and tangent lift 
of the algebroid e. Let us denote the corresponding double vector bundle morphisms by 
T * e  and Te ,  respectively. It is easy to prove the following theorem. 

Theorem 7. The tangent T e  and the cotangent T* e  lifts o f  an algebroid structure e on 

r : E ~ M are defined by the following commutative diagram 

T T * E  ocE ~ T * T E  /ETch. O~.T~- ~T*T*E* 

TTE*  K~. ~ TTE* id ~TTE* 

(36) 

Proof. We have two commutative diagrams 

T ' E *  A~ ~ TE* T*TE*  

T * E  T * T E  

o~E. ~ T T *  E* 

T ~  1 

~xE ~ T T *  E 

(37) 

It follows that the diagram 
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T*TE*  id ~T*TE* ~xE* E* TA~ T T *  > TTE* 

T*T*E*  ~-T'r o [P~'TE* O~E T * T £  ~ T T * E  

(38) 

is also commutative. All the mappings in this diagram respect three vector bundle structures 
and, since dTA~, = XE* o TAs o de* (cf. [5]), we have 7-s, T*E as in the diagram (36), and 
the corresponding double vector bundle morphisms: 

T * T E  7c ~ TTE* 

TTE, / 
T* ~ E  

TE KM o T~ / 
/ / 

T £ *  / l d  ~ T£*  

-I-M id 

TTM 
/ 

/ 
TTM / 
/ 

T M  

(39) 

and 

T*T*E*  7 ' c  > TTE* 

T ' E *  A~ / /  ~ TE* 

/ /7,6 / TE* > TE* we. /  

E* id ~ E* 

(40) 

We see from these diagrams, that (7-S)r = XM o Ter and (T'e),.  = A~,. We have also 

(Te)c = Tee o OtM l, (T*S)~. = A"~, [] (41) 

T h e o r e m  8. Let e be an algebroid structure on r : E --+ M. The following properties of  

e are equivalent : 

(a) s is a Lie algebroid structure, 

(b) A~ is a Poisson tensor, 

(c) AE and dTAe are e-related, 

(d) The following diagram is commutative (on the domain o f  the relation T'e)  : 
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T T * E ,  AE T * T * E  

Tc I T*c[ 
TTE* T*TE* 

T T E * ~  Te T T * E ~  T:R~ T T * E *  

' (42) 

(e) d~([X, Y]e) = [d~(X),  d~(Y ) l f o ra l l  X, Y • @'( r ) .  

Proof.  (a)< y(b) by the definition of a Lie algebroid. 
(b),', ',,(c)< ,~(d) is a version of Theorems 4.4 and 4.5 from [5]: a Leibniz tensor A is 

a Poisson tensor on a manifold N if and only if AN and - dTA are ,A-related. 
Finally, (C)<l->, (e), since 

tT, E([d~-(X), d~-(Y)]) = {l d~(X),  t d~-(Y)}AE = {dT(t(X)) o e, dT(t(Y)) o e}AE, 

which equals 

{ dT(L(X)), dT(t(Y))}dTA ~ o e 

= dT({t(X), t(Y)}A~) o e dT(t([X, Y]e)) o e = t(d~-([X, Y]e)) 

if and only if A E and dTAe are e-related. [] 

5. The Lie and exterior  derivatives 

Let (E, e) be an algebroid, X • ®J (r) ,  # • ®1 (zr). Since d~-(X) is a linear vector field 
on E,  d~-0(/z)) is a linear function on E. The corresponding section of E* we call the Lie 
derivative o f #  along X and d e n o t e / ~  (/z), i.e., 

t ( E ~ ( p ) )  = d~-(X)(L(#)). (A) 

In local coordinates, 

e . j i b O#k~k ( Of k a'~ " 
~f i e i (# j e , )  : f a i ~ x b e ,  -~- --f ick i -~- yxaP)  ) like;,. (B) 

It is easy to see that 

E, ex(f #)  = £,ex(#) + aer ( X ) ( f )  " lz (C) 

and 

/2}x(# ) = f £ ~ ( / ~ )  + (X, #) d / ( f ) ,  (D) 
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where the left derivative d~(f)  6 ®l (Jr) is defined by 

(d [ ( f ) ,  Y) = (df ,  a[(Y)), Y e ®J(r).  

Similarly, we can define the right derivative 

(d~r(f), Y) = (d f ,  aEr(Y)), Y e ®l(r ) .  

We have clearly 

E 
d~(fg) = f d~(g) + g d r ( i )  (E) 

and the analog identity for the left derivative. 

Theorem 9. For every X e ®J (r) there is a unique derivative £~x of the tensor algebra 
~(r) ,  called the Lie derivative along X, such that 

(a) / ~ ( f )  = a~(X) ( f )  ---- (X, d ~ f ) f o r  f e C°Z(M), 
(b) t(t;~((U)) = d~-(X)( t (u)) foru e ®'(7r), 
(c) £~((Y) ---- -[Y, X]e forY  c ®l(r) .  

Moreover, 

(d) fl_.}x(K) = f FSx(K ) + id~(f)®x(K) for f ~ CVC(M) and K ~ ~(r) .  

Proof. Any derivative of the tensor algebra 2 ( r )  is uniquely determined by its values on 
functions and sections of E and E*. On the other hand, it is easy to see that the identities 

and 

£ % ( f .  g) =/2~((f )  .g  + f . /2~((g) ,  

£%( f Y )  = £ % ( f ) Y  + fZ;~g(Y), 

£ % ( f # )  = £~( f ) l~  + f £~(l~), 

(43) 

for f,  g E C~(M),  # e ®l (zr), Y e ®1 (r), which follow from (C), (E), and the properties 
of [ , ]E, are sufficient to extend/Z~ to a derivation of the tensor algebra 

Z2~(AI ® - - . ® A k ) - - - - Z A I  ® . . . ® / ~ % ( A i ) ® . . .  x Ak. 
i 

It remains to prove (d). Since idyll.)® x is also a derivation, it is sufficient to check (d) on 
functions and sections of E and E*. On functions i d~cf)®x acts trivially and (d) follows 

from (a). For # C ®J (#), we have id~(f)OX/Z = (X, #) d,Z(f) and (d) follows from (D). 
Finally, 

id~ qf)®x(Y) = --a~ ( Y ) ( f ) .  X = -[Y, f X],, + f[Y,  X]~ 

for Y e ®l (r) and (d) follows from (c). 

Remark. (A) was introduced in [16] as the definition of d~(X) for e being a Lie algebroid 
structure. 
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Theorem 10. Let ® l (r)  9 X --+ /2x 6 Der(®0r) )  be a linear mapping assigning to each 

section o f  E a derivative o f  the tensor algebra ®(Jr). Then £ x  = E.ex f o r  an algebroid 

structure s on E i f  and only i f  E f x  = f £ x  + idl(f)®x f o r  a derivation d l :  C ~ ( M )  
®1 (Jr). 

Proof.  The 'only if '  part follows from the previous theorem. To prove the ' i f '  part, we can 

start with the identity 

t ( £ x # )  = D(X)(t(/.t)) 

to define a lift D(X) of X to a tangent vector field on E, and to show that this lift is of  the 

form df r. 
We can also find directly the bracket [ , ]e as follows. First, since 

( ix£ .r  - £ r ix ) ( f / - t )  = f ( i x £ r  - £ r i x )  (#),  

there is an element [X, Y] 6 ®l (r) such that i x £ v  - £ r i x  = t ix ,v  1. The bracket [, ] is 

bilinear and 

( i f x £ g r  - £ g r i f x )  = f g ( i x £ r £ v i x )  + fixid~g®V -- g £ r ( f )  - ix ,  

which shows that [ , ] is an algebroid bracket with the left anchor defined by al (X)(g) = 

(X, dig) and the right anchor defined by a r ( Y ) ( f )  = £ y ( f ) -  The right anchor is really 

tensorial with respect to Y, since 

~ .gv ( f )  = g l Z v ( f )  + id,g®r f = g E Y ( f ) .  

Hence, [ , ] = [ , ]e for an algebroid structure s and it is easy to see that E x  = EEX . [] 

We have already defined the right and the left exterior derivatives 

dr ~, d~: ' C°°(M) --+ ®lOr)  

with the property 

£~x ( f )  = ix dref + d~ixf ,  f ~ C ~ ( M ) .  (44) 

In general, for s which is not skew-symmetric, it is not true that E~: = ix d s + dEix for 

some exterior derivative d E even on the Grassman algebra q~ (zr). However, we can always 

find 

dr e, d~ : ®l(zr) --~ ®2(~) 

such that 

£ex# - d~'ix# = ilx d~# = -i2x d~ Iz. 

We have, in local coordinates, 

dE, ~: e k, k j i a Ofk ~i k a Ofk _k i 
r~Jk *) = c i j f k e ,  ® e,  + rr i ~ x a e ,  ® e,  -- ffi ~ x a e *  ® e , ,  

(45) 
d E k k i ® e J. a 3fk ek ® i a Ofk _i k 

l ( f k e , )  . . . .  - - c i j f k e  , er i Ox a , e ,  + cr i ~ x a e ,  ® e , .  
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It follows also that 

d~ ' ( f#)  -- f dr~(/z) + d r ( f )  ® # - # ® d [ ( f ) ,  
d [ ( f / z )  = f d [ ( # )  + d [ ( f )  ® # - / z  ® d~(f ) ,  

and d~ + s d r . 

The following theorem is the general algebroid version of Theorem 15 (d) of [6]. 

Theorem 11. There is a unique derivation d[ • ®l Or) ~ @2(jr) such that 

£ ~ / z =  d ~ i x / l - i  2 d [ t t ,  # e ® ] ( J r ) ,  X • ® ] ( r ) .  

Moreover, 

• A s . v~(d[/2) = - /2v.{ . )  

Proof. We have 

v d s k " aOfk ,~Ofko ~(  I ( f k e . ) )  : --c)). fkOs, ® O~j - o" i ~xa O~k ® O~i Jr- ,0 i ~ ~i ® O~k 

A s : - -£v~( l z )  - [ ]  

1 2 9  

(46)  

Remark.  It is well known that for skew-symmetric e we have d~ = d[ = d e and, con- 
sequently, it can be extended to a derivation d E of the Grassman algebra q~ (7r) [11]. Then, 
d e o d s = 0 if and only if A s is Poisson, i.e., e is a Lie algebroid structure. 

6. Bialgebroids 

Let ~, and~be algebroid structures on bundles r : E --+ M and zr : E* --+ M respectively. 
Following the ideas of Xu and Mackenzie [15, Theorem 6.2], we call the pair (e, ~) a 

bialgebroid if s, regarded as a vector bundle morphism 

T * E  c ~ T E *  

rrE 1 TTr] , (47) 

E e~ ~ T M  

is a morphism of algebroids T*~ and 77 ,  the cotangent and the tangent lifts of the algebroid 
?'. This means exactly that the dual relation e* between the corresponding dual bundles 

T E  ~ e*  T E  

E r ~ T M  

(48)  



130 J. Grabowski, P. Urbadski/Journal of Geometry and Physics 31 (1999) 111-141 

is a Leibniz relation between the Leibniz tensors d'rA~ on both sides, i.e., this relation is a 

coisotropic submanifold o f T E  × T E  with respect to the Leibniz tensor d'rA~ × ( -  d-rA~). 

Let us assume that, in local coordinates, ~ has the form (8) and 

A~ = "~kJyk c3yi ® Oyj -k- ~aO~i ® Oft, - -  "~aJOx" ® O y j .  (49) 

It is easy to calculate that 

) OCk k .a 09i @ 09j "1- Xa09i @ Oj:b d T ( A ~ ) =  ~0- -~y  x +'~Jyk~gk opO ~b 
. . O X  a - 

O"~aJjcbof,, ® O~,j q-cEjyk(O.;.i @ Or/ -Jr" Ovi @ 09j) 
Ox b - . . . 

+'~b (O~,e ® Oxt, + O~,i ® O@ ) - "5"J (o~. ® O+j + Ox,, ® O~,; ) (50) 

and that the relation e* in T E  x T E  with coordinates (x ~, yi, job, y j, ya', f i ' ,  x b', ~J') is 

defined by equations 

F ~ = y a - x  a = O ,  F~ = 2  a - a ~ ( x ) ~  k = O ,  
(51) 

Fj = yJ - ciik(x)yi~ k - ~J, F~ = x a - p~(x)y k = O. 

The equations define a coisotropic submanifold N with respect to A = ( -  d-rA~) x d-rA~ 

if and only if the Leibniz bracket of  the functions (51) vanish on N. The Hamiltonian vector 

fields corresponding to these functions are the following (we make use of  the fact that x a 
and )~a are equal on N): 

Xg = ~aj (Oj, j -Jr- Oyj ), 

X]' = cr ~xa y OX a . . 

xb3 = u~aJOPrk''koxaY -- pb~kJyk O~,j., "{'-'~bjo~j -I- p]'ylO)j __ pb'fi4aOx., 

[ 
X J : ~ x a  i Y  Y k s i Y Y  + k Y  + a  ~ x a y y  --cikcsY y )Oyl 

[ OC"~Jk' a i -k ,~jl..-.k j "~, i -s~ { o'pJbcra-k ) 02b 
q - ~ o x a p ,  y y  -Jr- k Y  +CikCsYY  ) O f - k - ~  Oxa k S - - ' ~ b c / k y k  

{ O'fijb a k ) 0~,~ +-~,ykO,,~ +.fijbod ' +~ j i : k~  + ~ ~xa  Pk Y -~- "pkb cjk yi "" . c k y o~i ~- "p'Jbo~,,. 

(52) 

One can easily see that F~ commute, with respect to { , }A, with all defining functions, so 
that we have three types of  functions left. Moreover, X b (F~) 0, b . = X 3 (F~) = 0 and we get 
the following seven non-trivial equations defining bialgebroids, corresponding, respectively, 
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/~ " X~(F j )  O,X~(Fbl) O, Xbl(F J ) 0, X~ ( F ~ ) O ,  and to X~(~ ' )  = O, X3(F  , ) = O, = = = = 

X ~ ( F ~ ) - - 0 .  

Theorem 12. The tensors A~, and A~ as in (9) and (49) constitute a bialgebroid structure 
if and only if the following equations are satisfied: 

(1) ~ / ' y "  +~ '~  " 
Pi = O, 

~ b i  a (2) p~y"  + ~ ~ = o, 

0 _b o .~bj  
(3) Pk "5".i a CJkirY bt O, OX a OX a Pk - - ' ~ I  P/ '  - -  " ~ " : 

3a(~ O "Xkb ' ° "  

(4) ~ P  + Ox" I - = 0 ,  

OCt b o ~ b J  
(5) k ,6,,.i a ~ i j  _ b ' " 

ax" Ox" rri - crk °i + c~k~b' = O, 

Pk " ~ i j  ~b  
ak  Pi = O, ( 6 )  ax" "~J" + ~ x  " pk - " 

(7) ~ rYk q- 3 x  a ~ Pi - -  OX,-----TP I - - c i  C.,k 

"~ff C j ~xJ -" _1 ~JScl O. 
- -  k i s  - -  i C ' s k  - -  Ck is = 

The pair (s, ~ constitutes a bialgebroid if and only if  (F, s) constitutes a Corollary 2. 
bialgebroid. 

Proof. The family of equations (1)-(7) does not change when we interchange 'tilde' with 
'no tilde'. [] 

The original definition of a Lie bialgebroid by Mackenzie and Xu [15] was given in terms 
cf exterior derivatives and Lie brackets. In the case of a general algebroid we have a slight 
substitute of the exterior derivative only, but it is enough to get the full analogy. 

Theorem 13. A pair (s, ~ of algebroid structures on E and E*, respectively, constitutes 
a bialgebroid if and only if  

d~[X, r]~ = [d~X, r]~ + [X, d~Vb (53) 

for all X, Y ~ @l (r), where the brackets ('the Schouten brackets') are defined by the 
formulae 

[X ® Y, Z]e = [X, Z]e ® Y + X ® [Y, Z],:, 
[ X , Y ® Z ] e = [ Z , X ] ~ ® Y + X N [ Z , Y ] ~ .  

(54) 
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Proof. We shall show, in local coordinates, that (53) is equivalent to Eqs. (1)-(7). To reduce 
the problem to the case X = ei, Y = ej, we find the relation of (53) with the structure of 
C~(M)-module in ®l (r). Replacing in (53) Y by f Y  we get 

d~([X, f]EY + f[X,  Y]E) = [d~X, f]2 @ y + y ® [d~X, f]~ + f[d~X, Y]e 

+[X, f d ~ Y +  d f ( f ) @ V - Y ®  dl(f)]e .  (55) 

(We use the following conventions: [X, f]~ = a~(X)(f), If, X] = -a~(X)( f ) ,  [X ® 
y, f]2 = [y, f]sX,  [X N Y, f]~ = [X, f]sY, etc.). We get furtherly 

IX, f]sd~Y + df([X, f ]s )  ® Y -  Y ® d~[X, f]e + f a r [ x ,  Y]s 

+ d r ( f )  ® [X, Y]s - [X, Y]e ® d~(f)  

= [X, f ]ed fY  + f[X,  dfY]s + [X, d 1 ~(f)]s N Y + d r ( f )  ® [X, Y]e 

- [X, Y]~ N d r ( f )  - Y N [X, d~(f)b  

+ [d~X, f]2 ® y + y ® [d~X, f]~ + f [dfX,  Y]s (56) 

and, finally, 

f(d~[X, Y]e - [dfX, Y]s - [X, df Y]E) 

= Y ® (dr~[X, f ] s  + [dfX, f]~ - [X, dr~(f)]s) 

- (d~[X, f]e - [d~X, f ]s  2 - IX, df ( f ) ]s )  ® Y. (57) 

This shows that (53) with Y = ei is equivalent to equations 

d~[X, f]s + [d[X, f ] l  _ [X, d~(f)]e = 0, (a) 

d[[X, f ]s  - [dfX, f]2 _ [X, df(f) ]e  = 0, (b) 

where X E ®l( r )  and f ~ C°*(M). 
We reduce (a) and (b) once more, this time with respect to X. Let us put gX instead of 

X. We get from (a) 

d~ (g[X, f ie)  + [gd~X + dfg N X - X N d~g, f]~ 

-g[X,  d~(f)]E -- [g, d~(f)]eX = 0. (58) 

Hence, 

g(d~[X, f]~ + [d~X, f]~ - [X, df(f)]~) + ([d~g, f]~ - [g, d~f]s)X = 0, 

which shows that (a) is equivalent to 

[d~(g), f l e  - [g, d~(f)]s = 0, 

dr~[ei, f]e  + [d~ei, f ] l  _ [el, d~(f)], = o. 

Similarly, (b) is equivalent to 

[dr~(g), f ie - [g, d~]~ = 0, 

(c) 

(d) 

(c') 
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d~[ei, f ] e  +[d~ei .  f ] ~ - [ e i ,  d~(f)]e  = 0 .  (d') 

Relaxing now the C~(M)-module  structure in (53) with respect to X, we get 
analogously 

d~[f, Y]~ + [f ,  drYly, + [d~(f) ,  Y]~, = O, (e) 

2 d~[f, Y]E -- [f ,  d 1 Y]~ - [d I ( f ) ,  Y],, = O, (f) 

which are 
equivalent 

(1') 

(2') 

(3') 

(4') 

(5') 

(6') 

(7') 
Now, it is 
(1)-(7). 

equivalent to (c), (c t) and (e), (f) with Y = el. Finally, in local basis, (53) is 
to the system of equations 

[d~(g), f]~ - [g, d~(f)]~ = 0, 

[d~(g), f]~ [g, = 0, - -  d ~ ( f ) ] ~  

d~[ei, f]e + [d~ei, f]~ - [ei, d~(f)L, = O, 

_ d ~ ~ 2 d~[f, ei]z [ 1 ( f ) ,  ei]~ - ]f, d lei]~ = O, 

1 d~[f, ei]~ + [d~(f) ,  ei]~ + [f, drei], = O, 

d~[ei, f ]s  [d~ei, f ] ~  [el, ~ - -  - -  d I ( f ) ] ~  = O, 

d tei, ej] ,  + [d ei, ej]  - [ei, dfej]  = O. 
a direct check that these equations are equivalent to the system of equations 
[] 

A canonical example of a bialgebroid is given by the following theorem. 

T h e o r e m  14. Let e be a Lie algebroid structure on r : E --+ M and let A ~ Q2(.f). Let 
"e be the algebroid structure on E* which corresponds to the linear Leibniz structure d~ A 

on E. Then the pair (e, ~ is a bialgebroid. 

P r o o f .  From Theorem 11 we get 

Vr (d~ X) = - [vr (X), d~-A] = - v r  ([X, A]~), 

where we used a formula from Corollary 1. It follows that d~X = - [ X ,  A]~ and (53) reads 
now 

[[X, Y]t, A] = [[X, A]e, Y]t + [X, [Y, A]~]~, 

which easily follows from the Jacobi identity for [ , L,. [] 

R e m a r k .  A standard example of a situation as above is provided by the Lie bialgebroid 
induced by a Poisson structure on a manifold (cf. [11,15]). Moreover, the above theorem 
shows that a bialgebroid may be constituted by a Lie algebroid and an algebroid which is 
not even skew-symmetric. 
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Example.  An extreme case are bialgebroids over a single point. It means exactly that we 

have algebra structures [ , ] and [ , ]' on a finite-dimensional vector space E and on its 

dual E* respectively. (An algebra structure on E is a bilinear operation [ , ] : E x E --~ E.) 

They form a bialgebroid (or, simply, bialgebra) if and only if 

d '[X, Y] = [d'X, Y] + [X, d'Y] 

for a l lX,  Y • E, where d ' :  E - +  E ® E is the dual map to [ , ]' : E* ® E* --+ E * . I n  

the case of  Lie algebra we recognize the definition of  a Lie bialgebra. 

7. T he  a lgebro id  o f  a l inear  c o n n e c t i o n  on TM 

Important examples of  algebroids which are not skew-symmetric are provided by lin- 

ear connections on a tangent bundle. Let a linear connection be given on TM. It can be 

represented by the covariant derivative 

(X,  Y) w-> V x Y ,  X,  Y • @l('rM) (59) 

or, equivalently, by the horizontal projection 

Ph : TTM -+ TTM 

or by the vertical projection 

Pv : TTM -+ TTM. 

The linearity of the connection implies that Ph, Pv are double vector bundle morphisms. 
Let (x a , 2 b, x tc, 2 'd) be a coordinate system on TTM. We have 

d .a tb (x a, 2 b, x 'c, 2 'd) o Pv = (x a, 2 b, O, 2,d + r;a(X)  x x ), 

(X a , Jcb , X 'c , .YC 'd)  o Ph = ( x a  , Job, x 'C,  - - r d , ( x ) j c a  x ' b ) ,  (60) 

8Y" b 0 8 
V x Y  = ~xb X Ox a + F,~.~ybx c axe, • 

T h e o r e m  15. There is a unique algebroid structure e on T M  such that 

£ fxY  = V x r .  (61) 

For this algebroid a~ = id, a t = 0. 
Conversely, any algebroid structure (TM, e) such that a~ = id, a[ = 0 is the algebroid 

o f  a linear connection on T M  

Proof.  We define a bracket [ , ]e of vector fields by the formula 

[X, Y]E = - V y X .  (62) 
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~: id and a~ 0: It is obvious that it satisfies the condition (10) with a r = = 

[ f  S ,  gY]~. = - V ¢ y ( f  X )  = - g f V r  X - g Y  ( f ) S  

= g f [ S ,  Y]e - g Y ( f ) S  

= g f [ S ,  Y] - g a ~ ( Y ) ( f ) S  + f a f ( X ) ( g ) Y .  

~ id, af 0 implies the following To prove the converse it is enough to notice that a r = = 

form of e • T * T M  ~ TT*M: 

(x" ,  Ph, .~', P,I) o e ( x , ,  zrl,, O, f , l  - "  '/' " = - l,t/~x 2ra~, (63) 

where (x", 2/', f,,, zrd) are coordinates in T * T M .  [] 

Let Ph be the horizontal projection of  a linear connection. The formula 

P~ = tOM o Ph o XM (64) 

defines the horizontal lift of  the t ransposed l inear connect ion on TM. The connection is 

called symmetr ic  if it is equal to the transposed connection, i.e., if Ph = P~. 

It is well known that for each linear connection on TM with the covariant deriva- 

tive V there exists the dual connect ion on T ' M ,  with the covariant derivative V +, such 

that 

X((U, Y)) = (V+/z, Y) + (tz, V x Y ) ,  bt G @l(TrM), X, Y e @l('cM). 

Theorem 16. Let  (TM, e) be the algebroid structure o f  a l inear connection with the, 

horizontal  project ion Ph. The fo l lowing  relations are satisfied." 

(a) E = (p t )~  o E M, where  eM = Ot M 1 is the canonical  algebroid on T M and ( p t )  + is the 

vert ical  project ion o f  the dual to the transposed connection, 

(b) AZ. = ( e t )~  o ~M, where  A M  is the canonical  Poisson tensor on T ' M ,  

(c) d~- = Ph o dr, i.e., d~ is the horizontal  lift, 

(d) £~/z  = g + I z f o r l  ~ E @l(~M), 
(e) d ' r / =  d f ,  d~ f  = O f o r  f E C°° (M) ,  

(f) d*r:U = V + u f o r u  ~ @l(TrM). 

Proof. 
(a) In local coordinates, 

t a . b  ( x a , p b , y c c , p d ) ° ( P t ) +  = (X a , p b , 0 , D d _  ( 1 " ) b d P a X )  
~ 1  . b x  

= (x" ,  Pt~, O, Pd -- ldt,  paX ), (65) 
( xa,  Pb, jcC, Dd) o (p t )+  o 8 M = (x a, 7rb, O, fd  _ 1"dbYQ, • b) 

and the equality follows from (63). 

(b) We have from (a) 

A"~ = E o ~rM = (pt)v + o eM o 77.r~ = (p t )+  o ~M. (66) 
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(c) It follows from the formula (21) that 

d~(X) = XaOx. -- F'~abjcbxcox~ = Ph(XaO~) 

o x a  .b "~ 
= Ph Xaax ~ + ~ x  b x  Ox,,) = Ph o dzX. (67) 

(d) By the definition of the Lie derivative, 

t (L~( t t ) )  = d~X( t (# ) )  = (Ph o dTX)( t (#) ) .  (68) 

Since t(tt)  = ttaJC a and Ph o dTX = xaoxo - P_flb.tbXCOx,, we get 

OtZb xaj¢ b - FcabxbXC lz a (69) (Ph o dTX)(t(/z)) ---- Ox a 

and, consequently, 

O#b X a dx  b -- l"TabXctza d b = V ; t z .  
£~x(tO = Ox~ 

(e) (dr~(f), X) = a ~ ( X ) ( f )  = X ( f )  = (d f ,  x),  (70) 
( d~ ( f ) ,  X) = a~ ( X ) ( f )  = O. 

(f) It follows from the definition of the exterior derivatives and from (d) that 

i~ dr~ = / : ~ U  - d~ix# = £ ~ U  = V+/z = i ~ V + # .  [] 

8. Metric connections 

In this section we give an interpretation of the Levi-Civita connection in terms of 
algebroids. Let g be a contravariant metric tensor on M and let ~ : T * M  ---> T M  be 

the corresponding isomorphism of vector bundles. The tensor dTg on T M  is linear and 
defines an algebroid ( T ' M ,  e),  i.e., A~ = dTg. In local coordinates, 

g = gabOxa ~ Oxh' 
Og ab 

dTg = Ae  = Ox c Jcco~a ® O th + gab(Ox~ @ Ojch + O t u Q Oxt,), (71) 

Og ab [ ~u.. OVc "~ 
[tz, v]~ -- Ox c l zavbdx  c + gab l ' " Vb + #a-~xb ) dx  c. 

\ Ox ~ 

It follows that a~ = ~ and a~ = - ~ .  
Since ~ is an isomorphism, ~ . l  AE is a linear Leibniz structure on T*M. It defines an 

algebroid on T M  with the bracket 

[X, Y]~(g) = ff([ff-1 X, if-1 y]) .  (72) 

The left anchor i s  al  (g) = id, the right anchor i s  a~ (g) = - i d ,  and coordinates of  the 
algebroid bracket are given by the formulae 

o x a  b oYa b + g a b ( O g b c  Ogbd O g c d ) x c y d .  (73) 
([X, rle(g))  a -- ~ x  b r + -~xb X ~k ~ x  d + Ox-------- ~ Ox b 
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The formula 

A~:~, = ½(AM -- g . !  dTg) (74) 

defines then an algebroid structure (T, eg) with the anchors a r ~ : l d ,  a 1 = 0 ,  i.e., (TM. e~,) 
is the algebroid of  a linear connection on TM.  The covariant derivative of  this connection 

is given by the formula 

V x Y  = - [Y ,  X]~, = ½([X, Y] + [Y, X]~(,~) 

0 ya 1 ab ( Ogbc Ogbd Ogc~l "~ 
= Oxl, XbOx ,, + -~g ~ x d  + Ox~__ ~ ] XCYdO,.,. (75) 

We recognize Vx Y as a covariant derivative with respect to the Levi-Civita connection of 

the metric g. 

9. Lifting processes on differentiable groupoids 

In [ 16] a procedure of lifting of multiplicative vector fields on Lie groupoids is described• 
This procedure, what the authors admit implicitly, has nothing to do with the whole groupoid 
structure, but rather with the structure of a fibration only. In other words, it is just the standard 
complete lift procedure, but applied to specific vector fields. The general scheme is based 
on the following theorem. 

Theorem 17. I f  or • P -+ B is afibration, F " B --~ P is its section, and X is aprojectable 
vector field on P, tangent to V ( B ), then the complete lift dT X is a vector field on T P, tangent 
to the subbundle E C TyfB)P of or-vertical vectors. 

Proofi In a neighborhood of a point p ~ O(B), we can choose coordinates (x", f i )  s u c h  

that (x") are coordinates near a ( p )  E B and ( f i )  are coordinates in fibers, vanishing on 

y(B). 
Let us write 

X(x,  f )  = g"(X)Ox. + hi(x, f )Ofi ,  

where h i (x, 0) = 0. Thus 

Oga .b + hi(x'  f ) a f '  dTX = g"(X)Ox. + Ox----~(x)x 0i-" 

Oh i Oh i 
+~xa (X, f ) kao f ,  + ~ ( x ,  f ) Y J o f "  

The subbundle E C T P  is described by the conditions 2?" = 0, f i  = O, SO that dTX is 

clearly tangent to E and 

Oh i .. 
dTXIE = ga(x)Ox,, + - ~ ( X ,  O) fJof i .  [] 
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What we use to lift multiplicative vector fields on a Lie groupoid c~, # : G~--B to vector 

fields on the bundle A (G) of  the corresponding Lie algebroid is only the ~-fibration structure 

over the base B and the fact that multiplicative vector fields have the desired properties (are 

star-vectors in the terminology of  [16]). 

On the other hand, one can use the above lift to obtain the lift d~- for the corresponding 

Lie algebroid. This lift for sections of  A(G)  was introduced in [16] by the formula 

d~ X (t (tz ) ) = t ( £ ~  l_t ) (76) 

(cf. Theorem 9). Since we want to present this procedure in the whole generality, we have 

to start with a more general object than a Lie groupoid. 

Apre-L ie  groupoid is, roughly speaking, an object we obtain by relaxing the associativity 

condition in the definition of  a Lie groupoid. Having submersions c~, 13 : G --> B onto the 

manifold B of units and the inclusion map e • B --+ G, we define the vector bundle 

r : A (G)  ---> B as usual, to be the inverse image of  the vertical bundle V~G ~ G across 

the embedding e : B --+ G. We shall consider, for simplicity, B to be just a submanifold 

of  G, so that A ( G )  = V~G.  Starting with a section X : B --+ A(G)  C TG, we define the 

right and left prolongations of  X to a vector field on G 

~ ( g )  = T ( R g ) X ( f g )  and ~ - (g )  = T ( L O T ( i ) X ( o t g ) ,  (77) 

where Rg, Lg are the right and left translations, and i " G ---> G is the inverse mapping. 

Now, we define a bracket on sections of A(G)  putting 

_-~ ....+ 

[X, Y]e(p) = [ X ,  Y ](p) (78) 

<--- 

f o r  p 6 B. Let us note that X and X are no longer invariant vector fields, since the 

pre-groupoid product is not assumed to be associative. Hence, the bracket [ ~ ,  --Y-> ] is no 

longer the right-prolongation of  any element of  ®l (r). On the other hand, the definition 

(78) makes sense and we have the following. 

Theorem 18. The bracket [ , ]~ defines a skew-symmetric algebroid structure on the 

bundle r : A (G)  --+ B with the anchor 

a : A (G)  l > TB,  a = Tf lA(GI.  

Proof. The bracket [ , ]~ is obviously skew-symmetric and, for f 6 C a ( B ) ,  we have 

[X, f Y ] e ( P )  = [ S ], TY(p)  = [ X ,  ( f  o fl)-Y->](p) 

= f ( f l ( p ) ) [  X ], Y ](p) + X ( f  o # ) ( p )  Y (p)  

= f [ X ,  Y]e(p) + ( ( T f l ( X ) ) ( f ) ) ( p ) Y ( p ) .  [] 

Theorem 19. The vector f ield X -X ~ -  ---- + X projects to a (X)  under both projections, ot 

and j6, and it is tangent to B-regarded as a submanifold o f  G. 
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Proof.  No difference with respect to the classical case. Let us mention only, that in the 

pre-algebroid case the vector field X is, in general, no longer multiplicative. This shows 

that the multiplicativity is not essential for the lifting procedures. [] 

Corol lary  3. The vector field dyX is tangent to the submanifold A ( G) o f  T G. 

Let us denote dTXIA(G) by d ° X - the pre-Lie groupoid lift of a section X of A(G).  

Theorem 20. For each section X ~ ®1A(G), we have 

dOX = d~FX. 

Proof. Since the set of  functions {t(/~) : # ~ @1 (Tr)}, where Jr : A*(G) -+ B is the bundle 

dual to r ,  is a complete set of  functions almost everywhere on A(G) ,  it is sufficient, in view 

of (76), to prove the equality 

dOX(t(#) )  = t(£%/z) forall/ . t  E ®l(Tr), 

i.e., 

d 0 X 0 ( t t ) )  o Y = a ( X ) ( # ,  Y) - (/1, [X, Yb) (79j 

for all t-~ ~ ®J (Jr), X, Y ~ ®I (r). 

We can find (at least locally) a function f on G vanishing on B and such that d f  

represents #,  i.e., (it, Y) = (d f iB ,  Y). We have, 

d0X(t (U))  o Y = <dTX, dr(#)) o Y ---- <dTX, d T d f )  o Y = dr<X, d f )  o Y 

= t ( d  {X, d f ) )  o Y = (d {.~, d f ) ,  Y) = { Y,  d (X, d.f)[B 

= Y ((X, d f ) ) l e  = (([ Y ,  X], d f )  + X ( ( - ~ ,  d f ) ) ) l e  
--.> -.-> 

= ([ Y,  X ,  d f ) lB  + a ( X ) ( Y , / 2 )  

= a ( X ) ( Y ,  #)  - (#, [X, Y],,) = (Y, £~¢U). 

Here we used the fact that [ -~ ,  X-']/3 = 0. In general, the left and right prolongations do 

not commute as in the case of  Lie groupoids, but they commute on B, and it is sufficient 

for our purposes. [] 

It is clear that relaxing the associativity assumption we get skew-algebroids as introduced 

in Section 1 which are no longer Lie algebroids. 

Example.  Let V be a vector space and let D : V × V -+ V be a skew-symmetric, bi-linear 

mapping. We define a pre-Lie group structure on V (a pre-Lie grupoid over a single point) 

as follows. Let X * Y be the pre-group product given by 

X * Y = X + Y + D ( X ,  Y). 
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It is clear that 0 is the unit element and X ~ - X is the inverse mapping. A (V) is canonically 

identified with V. We have the following formulae for prolongations: 

X (Z)  = X 4- D ( X ,  Z), ~--(Z) = - X  4- D ( X ,  Z), 

and we obtain the bracket 

[X, Y]~. = [ X ], -7 ] (0 )  = 2D(X,  Y). 

It is easy to see that this bracket satisfies the Jacobi identity if and only if ' . '  is associative. 

Also the vector field X(Z)  = 2D(X,  Z) is multiplicative if and only if '* '  is associative. 

In the above considerations concerning pre-Lie groupoids we implicitly assumed that 
the product qlq2 exists if and only if f l (ql)  = or(q2). However, relaxing the associativity 

assumption, we should probably change also this axiom as shown in the following example. 

Example .  Suppose that in a Lie group D we have chosen a Lie subgroup G and a 'com- 

plementary '  submanifold such that 

(1) e E M a n d M  - j  = M ,  
(2) the composition G × M 9 (g, u) ~ gu ~ D is a diffeomorphism, 
(3) for each pair u, v ~ M there is a unique g ~ G, denoted by ~0(u, v), such that ugv ~ M. 

We denote the element u~o(u, v )v  by u ,  v. 

For a given subgroup G one can find such a triple (D, M, G), at least locally, putting 

M = exp m, where m is a complementary subspace to the Lie algebra g of G in the Lie 

algebra b of  D. The reader easily recognizes some similarities with double Lie groups (e.g. if 
M is a subgroup) and quasi-Poisson Lie groups (cf. [9] and the concept of  quasi-triple in [ 1 ]). 

Since every element d 6 D has unique decompositions d = gu = vh, where g, h 6 G 
and u, v c M, we shall write d = (g, u, v, h). We have obvious projections a,  I3 : D ~ G, 

o t ( g , u , v , h ) = g ,  / 3 ( g , u , v , h ) = h .  

Now, we define a partial product in D defined for pairs 

d l =  (gl, ul ,  Vl, hi) ,  d2 = (g2, u2, v2, h2) 

such that 

/3(dl)~o(ul, U2) = ¢p(Vl, v2)ce(d2) 

by 

dl od2 = (gl, Ul *u2,  vl *v2,  h2). 

This definition is correct, because 

gl (Ul * u 2 )  = glul~o(uj,  u2)u2 = Vlhl~p(ul, u2)u2 

= Vlqg(Vl, v2)q2u2 = vl(P(Vl, v2)v2h2 = (vl * v2)h2. 
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Moreover ,  a ( d l  o d2) = a ( d l )  and/~(dl  o d2) : fl(d2). Of  course,  this partial operat ion is 

not  associat ive unless the , - p r o d u c t  is not  associat ive.  It is easy to see that e lements  d = 

(g, e, e, g),  i.e., d = g E G, fo rm the set o f  units and that every  e lement  d : (g, u, v, h)  

has the inverse i (d) = (h, u -  1, v -  l, g).  If  M is also a subgroup,  then what  we get is exactly 

the Lie  groupoid  o f  the double  group. 

The  quest ion what  are the a lgebroids  being the infini tesimal versions of  such structures 

we postpone to a separate paper. 
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