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Abstract

A notion of an algebroid — a generalization of a Lie algebroid structure on a vector bundle is
introduced. We show that many objects of the differential calculus on a manifold M associated
with the canonical Lie algebroid structure on TM can be obtained in the framework of a general
algebroid. Also a compatibility condition which leads, in general, to a concept of a bialgebroid.
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0. Introduction

The classical Cartan differential calculus on a manifold M, including the exterior deriva-
tive d, the Lie derivative L, etc., can be viewed as being associated with the canonical Lie
algebroid structure on TM represented by the Lie bracket of vector fields. Lie algebroids
have been introduced repeatedly into differential geometry since the early 1950s, and also
into physics and algebra, under a wide variety of names. They have been also recognized as
infinitesimal objects for Lie groupoids [18]. We refer to [14] for basic definitions, examples,
and an extensive list of publications in these directions.
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Being related to many areas of geometry, like connection theory, cohomology theory,
invariants of foliations and pseudogroups, symplectic and Poisson geometry, etc., Lie alge-
broids became recently an object of extensive studies.

What we propose in this paper is to find out what are, in fact, the structures responsible
for the presence of a version of the Cartan differential calculus on a vector bundle and how
are they related. This leads to the notion of a general algebroid.

1t is well known that there exists a one—one correspondence between Lie algebroid struc-
tures on a vector bundle t : E — M and linear Poisson structures on the dual vector
bundle 7 : E* — M. This correspondence can be extended to much wider class of binary
operations (brackets) on sections of T on one side, and linear contravariant 2-tensor fields
on E* on the other side. It is not necessary for these operations to be skew-symmetric or
to satisfy the Jacobi identity. The vector bundle 7 together with a bracket operation, or
the equivalent contravariant 2-tensor field, will be called an algebroid. This terminology
is justified by the fact that contravariant 2-tensor fields define certain binary operations on
the space C*®°(E*). The algebroids constructed in this way include all finite-dimensional
algebras over real numbers (e.g. associative, Jordan, etc.) as particular examples. The base
manifold M is in these cases a single point.

Searching for structures which give us differential calculi on vector bundles, we look at
objects of analytical mechanics as related to the Lie algebroid structure of the tangent bundle.

The tangent bundle TM is the canonical Lie algebroid associated with the canonical
Poisson tensor (symplectic form) on T*M. Other canonical objects associated with TM
are: the canonical isomorphism

ay TT*M — T*TM
of double vector bundles, discovered by Tulczyjew [19], dual to the well-known flip
kp:TTM — TTM,

and the tangent lift dr of tensor fields on M to tensor fields on TM (cf. [5,17,22]).

The algebroid structure of the tangent bundle is not used in analytical mechanics directly
viaits Lie bracket of vector fields. In the Lagrange formulation of the infinitesimal dynamics
one uses the mentioned isomorphism « . The canonical symplectic structure is the basic
for the Hamiltonian mechanics, but to obtain Euler-Lagrange equation we use the complete
tangent lift dy. Following Weinstein [21] and Libermann [12] also Lie algebroids other
than that of the tangent bundle can be used in the variational formulation of the dynamics.
It is important to know if one can characterize an algebroid structure directly in terms of
objects like dT, apy, etc.

The search for a basis of the Cartan differential calculus on a vector bundle is not the only
reason for studying general algebroids. We are motivated also by the fact that the interest in
Lie-like, but not skew-symmetric, or not satisfying the Jacobi identity, structures has been
growing in last years.

For example, structures more general than Lie bialgebras appear as semi-classical limits
of quasi-Hopf algebras [3]. The general theory of such objects, known under the name of
Jacobian quasi-bialgebras, was developed by Kosmann-Schwarzbach [9]. They form the
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infinitesimal part of quasi-Poisson Lie groups. The dual objects are Poisson quasi-groups,
so that their infinitesimal parts are quasi-Lie algebras, i.e. ‘not quite Lie algebras’. We are
sure all this has an algebroid counterpart in the spirit of our work. Some examples are
sketched in Section 9.

Alsoin the theory of webs one can find objects similar to Lie groupoids but not associative
in general [4]. We think that their infinitesimal parts are algebroids in our sense.

Let us also mention the concept of Loday algebras, i.e. Leibniz algebras in the sense of
Loday [13] (cf. also [10]) which are ‘non-skew-symmetric Lie algebras’.

Finally, let us recall the use of Nijenhuis tensors in defining deformed Lie algebroid
structures on tangent bundles. Considering properties of (1. 1)-tensors less restrictive than
vanishing of the Nijenhuis torsion, we get algebroids in the sense we propose.

All this provides another motivation for our work.

The paper is organized as follows.

In Sections 1-3 we show that objects similar to aps, k3, and d7 can be associated with
any algebroid structure. Each of these objects separately provides a complete description
of the algebroid structure. Other constructions, known for Lie algebroids are extended to
general algebroids. We define the tangent and the cotangent lifts of an algebroid in Section 4
and the Lie derivative in Section 5. We find an operation which acts as the exterior derivative
in a limited way. Conditions for an algebroid to be a Lie algebroid are formulated in terms
of these objects (Theorems 8 and 10).

The discussion of algebroids is extended to bialgebroids in Section 6. Alternative defini-
tions of bialgebroids are considered. A link to the original definition of Mackenzie and Xu
[15] is established by Theorem 13.

In Sections 7 and 8 we discuss the algebroid constructions in the important case of an
algebroid defined by a linear connection on the tangent bundle TM. The Lie derivative for
this algebroid coincides with the covariant derivative. The algebroid of a linear connection
is not skew-symmetric and, consequently, is not a Lie algebroid.

The canonical example of an algebroid is the Lie algebroid A(G) of a Lie groupoid G.
The Lie algebroid structure on A(G) is obtained from the canonical Lie algebroid structure
of the tangent bundle TG. Thus, one can expect that objects of the Lie algebroid A(G)
can be obtained directly from the corresponding objects of the canonical algebroid TG. We
show in Section 9 how the algebroid lift can be obtained from the tangent lift dt and we
discuss also the relation between the lift dt and the lifting of multiplicative vector fields,
described in [16]. All this can be done (at least partially) for pre- (or quasi- ; the terminology
is not fixed yet) Lie groupoids G, which are structures weaker than Lie groupoids (we do
not assume associativity). Having in mind some natural examples of this kind related to
quasi-Poisson Lie groups, webs, quasi-Nijenhuis tensors, etc., we are planning to discuss
these problems in a further publication.

0.1. Notation

Let M be a smooth manifold. We denote by 7y : TM — M the tangent vector bundle
and by mp; : T*M — M the cotangent vector bundle.
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Let 7t : E — M be a vector bundle and let w : E* — M be the dual bundle. We use the
following notation for tensor bundles:

t®E@u - Ou E = @(E) — M,

™ EAy - AME = A (E) — M,
the module of sections over C*°(M):

& (1) = M@y(E),  P'(1) = I'(Ay(E)),
and the corresponding tensor algebras

®(1) = Brez ® (1)(E),

(1) = ezt (0),
T(1) = Brez @ (1 ® 1) = Brez T (1),

where
TOn EQE* — M
is the Whitney sum. In particular,
®°(1) = @) = (1) =C*(M)
and
® (1) = o (1) = T¥(x) = {0} fork < 0.

By (-, -), we denote the canonical pairing between E and E* as well as pairings between
the corresponding tensor bundles, e.g.,

() @4 (E) xuy @5 (E*) — R,
and pairings of sections, e.g.,
() @ (1) x ® () — C®°(M).

Let K be a section of a tensor bundle ®’,‘W(E ), K € ®*(t). We denote by ((K') the corre-
sponding linear function on the dual bundle

UK ®%(E") - R
car> (K(m),a), m=n%a). 1
For a section X of 7 (X € ®' (1)), we have the usual operators of insertion

il 1 @ () - () ]

4
LR @ gt > AX, w1 ® - Ophpt, )

!
where u; € ®!'(r) and Vv stands for the omission. We denote by iy the derivation of the
tensor algebra ®@():
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k+1
Ix(U1 ® - ® ppyr) = Z(—l)/+'i[x(ul ® - ® Upt1).
=1

Similarly, for a section K of E* ®y; E, we have the derivation ix of the full tensor algebra
¥(7) determined by

Lkex(Y) = —(u, V)X, iuex(v) = (v, X)u, iupx(f)=0

for XY e ®' (1), u, v e @ (), f € C¥(M).
Let A € ®(r). We denote by A the mapping

. ok ~ _:l
AE"—> E, Aop=1i,A.
0.2. Local coordinates
Let(x“),a = 1, ..., n,beacoordinate system in M. We introduce the induced coordinate
systems
(x“.%"yin TM, x“ pp)in T*M.

Let (ey, ..., ey) be abasis of local sections of T : £ — M and let (ei, ..., el be the dual
basis of local sections of 7 : £* — M. We have the induced coordinate systems:

(x“ ¥, Yy =uel) inE, (x“. &), & =ue) inE",
(x“. """y in @ E, (%, &ipiy) in @)y ET

and
(x“.y", %", y7) inTE, (x', &, 1" &) inTE",
(x4, yivie g yivedny n T ®y E.
Y ppom) inTE. (& prop’) inTUEY,
(&) in ®y EY, (Y mpp)  in ® TEE,

where 8; e (I’, ..., 2} U{l,..., m}.
We have the canonical symplectic forms:

wp = dp, A dx“ + dg; A dE
on T*E* and
wp = dp, A dx? + dm; A dy'
on T*E, and the corresponding Poisson tensors
Apr = 8p, N Oya + 8,5 A and Ap = 8p, Nyt + 07, N D\
There is also a canonical isomorphism (cf, [8])

R.: T'E* — T*E (3)
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being an anti-symplectomorphism and also an isomorphism of double vector bundles

R,

T*E* yT*E
Yw T*r w‘
i E id E
_ / . )
E* ld N E* r
A s
M id M

In local coordinates, R, is given by

(xa, yi1 Db, 7Tj) oR, = (xa’ goiv —Pb; Ej)

1. Leibniz structures and algebroids

Definition 1. A Leibniz structure is a pair (M, A), where M is a manifold and A is
a contravariant 2-tensor field. A Leibniz structure defines the Leibniz bracket {-,-} 4 on
C*®(M) by

{f.8}a=(4,df ® dg).
The bracket { , } is a bilinear operation satisfying the Leibniz rules

{f.ghta = {1 g)ah + g{f h}a, {fh.gta =S glah + f{h, gla. &)

A Leibniz structure is called skew-symmetric if the tensor A or, equivalently, the bracket
{ ., }a,is skew-symmetric.

Remark. A Leibniz bracket, which is skew-symmetric and satisfies the Jacobi identity is
called a Poisson bracket and the corresponding tensor — a Poisson structure. It is well known
that Lie algebroid structures on a vector bundle E correspond to linear Poisson structures
on E*.

A Leibniz structure A on E* is called linear if the corresponding mapping A:TE* >

TE™* is a morphism of double vector bundles.
Let T : E - M be a vector bundle. The commutative diagram

T*E* — A Tpx

R,l / ’ (6)

T*E
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describes a one-to-one correspondence between linear Leibniz structures A on E* and
homomorphisms of double vector bundles (cf. [8])

T*E £ TE*

WA TEe T
T*r

E

V4

™
(7)

Er/
E*

~ S e

M

M id

Ty

The core of a double vector bundle is the intersection of the kernels of the projections.
It is obvious that the core of T*E (TE™) can be identified with T*M (E*). With these
identifications the induced by & morphism of cores is a morphism

- T"M — E*.
In local coordinates, every ¢ as in (7) is of the form
(x. &, 1", ) o = (x 7, o (Y, 5 (x)y i + 07 (X) pa) (8)
and corresponds to the linear Leibniz tensor
Ae = i ()& ® B, + 0] (1), ® D — 0] (X)dee ® B, 9)
We have also
i oe = @4 0¥, (L E) oe = (x o) (x)pp).

Remark. In [7] by pseudo-Lie algebroids (tesp. pre-Lie algebroids), we called the linear
(resp. linear and skew-symmetric) Leibniz tensors on E*. Throughout this note the corre-
sponding algebroid structures (represented by pairs (E, €) or, equivalently, by (E*, A,))
will be called simply algebroids (skew algebroids). Note also that the notion of a skew
algebroid was introduced by Kosmann-Schwarzbach and Magri in [11] under the name of
pre-Lie algebroid. The relation to the canonical definition of Lie algebroid is given by the
following theorem.

Theorem 1 [7]. An algebroid structure (E, ¢) can be equivalently defined as a bilinear
& .

bracket [-, -]¢ on sections of T : E — M together with vector bundle morphisms a; , a; :

E — TM (left and right anchors) such that
[fX.gY]e = flaf o X)(@)Y — gla; o Y)(HX + fg[X. Y] (10)

for f,g €C®(M), X,Y € @' (7).
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The bracket and anchors are related to the Leibniz tensor A. by the formulae

u[X, Y1o) = {(X), t(¥)} 4,
(@) o X(f) ={t(X), 7" fla,, Y
m*(af o X(f) ={n"f, (X))},

We have also a = e and a} = (e.)*. The algebroid (E, ¢) is a Lie algebroid if and only
if the tensor A, is a Poisson tensor.

The canonical example of a mapping ¢ in the case of E = TM is givenby ¢ = ey =
a;ll — the inverse to the Tulczyjew isomorphism, which can be defined as the dual to the
isomorphism of double vector bundles

TT™M M ~TTM
TTM M mzw
TTM .
™ id ™
/ Y
id
™ TM™ ™
S S
M id M

In general, the Leibniz structure map ¢ is not an isomorphism and, consequently, its dual
k~1 = &* with respect to the right projection

TE K
&‘ -
Tr x
E r
Kl

TE
N
/ T . (13)
™ E i
A S
' M

M id

is a relation and not a mapping. In this diagram «, = ¢,.
Similarly as in [5], we can extend ¢ to mappings

¥ @ T'E — T Q) E*,
r 20, as follows. We put, forr =0,
BV EXR>TM xR =TM xRxToR=TM xR xR
i(e, t) > (g-(e),t,0) (14)
and, forr = 1, ¢®! = ¢. Forr > 1, we apply the tangent functor to the tensor product map

® . E* XM---XME*—>®;‘,1E*
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and we define €®” by the commutativity of the diagram

TE* xrag - xrm TEY 9, T, B*

o

ch’] o - (15)
T*FX * @7‘ r *
Exp-oxp TVE —2 @0 THE

In local coordinates, we have

b s .
(x¢, Eioi, X ) §j.j,)o e®

S R kigig, a .

= (x s TTiyips P Y vz(cij,} Tjyjiakjiei-ic T, jT.u-~://-|U’j/+1~:/,-)) . (16)
!

Of course, £ may be reduced to skew-symmetric (symmetric) tensors and, as in [5], we

have also the commutative diagram

, : @1 o B(r=1) . :
(@ T E) xp (@ ' T"E) == (T @hy B) o (T EY)
@El T@MJ

@pT*E : Ty EX

n

2. Leibniz relations

In the following definition we adapt standard concepts of the theory of Poisson manifolds
and Lie algebroids.

Definition 2. A submanifold N of a Leibniz manifold (M, A) is called coisotropic if
AWTNY?Y ¢ TN, where (TN)? C T% M is the annihilator of TN C TM. A relation
L C M; x M, between Leibniz manifolds (M, A;) and (M>, A>) is a Leibniz relation if
L is a coisotropic submanifold of Leibniz manifold (M; x M2, (—A)) x Az).

Theorem 2. Let F : M| — M, be a differentiable mapping between Leibniz manifolds
(M7, Ay) and (M2, A»). Then, A| and A» are F-related if and only if the graph of F is a
Leibniz relation.

Proof. The proof is completely parallel to that in the Poisson case. O

Definition 3. Let 7; : E; — M, be a vector bundle, i = 1,2. Let & be an algebroid
structure on 7; and let A; be the corresponding Leibniz structure on E. A vector bundle
morphism ¥ : £{ — E is an algebroid morphism if the dual relation ¢* : EJ — E} isa
Leibniz relation.
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3. The algebroid lift d7;
For a tensor field K € ®*(t), we can define the vertical lift v, (K) € ®*(g) (cf. [6,22]).

In local coordinates,

ve(f e @ @e) = f’v'“'kay,-] ® @0, (18)
A particular case of the vertical lift is the lift vr(K) of a contravariant tensor field K on M
into a contravariant tensor field on TM.
Lemma 1. Ler (E, ¢) be an algebroid and let K € ®* (1), k > 0. Then

1(ve(K)) = vi(t(K)) 0 e®. (19)
Proof. In local coordinates, both sides of (19) are equal

Fr (e, g,
for k > 0. For a function f on M, we get

W(ve f)le, 1) = tf(T(e)) = tf (tm(er(e))) = vT(L(f)) 0 e%e, 1). O

It is well known (see [5,22]) that in the case of E = TM we have also the tangent lift
dt : ®(tm) — @(tTMr) Which is a vr-derivation. It turns out that the presence of such a
lift for a vector bundle is equivalent to the presence of an algebroid structure.

Theorem 3. Let (E, ¢) be an algebroid. For K € ®"(1), k >0, the equality

H(dF(K)) = dT((K)) 0 e®* (20)
defines the tensor field d7(K) ®* (tg) which is linear and the mapping

d7 : ®(1) — ®(1r)

is a vy -derivation of degree 0. In local coordinates,

afk , o
fa (x) + ¢ (x)y’ f’(X)) dk. (21

A (f (e = fix)of (X)dp + (yip? (x) r

Conversely, if D : ®(t) = ®(tE) is a v,-derivation of degree 0 such that D(K) is linear
for each K € ®(), then there is an algebroid structure ¢ on t . E — M such that
D = d7.

Proof. Since dt(((K)) o £®* is a linear function on ®"ET*E , it defines a unique tensor
field d5(K) € ®*(tg). In local coordinates,
dr(f e, @ - ® €ip)) = dr(f1 i)

9 iy---ig L
= ];Xa xa§i|~~ik+f”mlk§i|-~~ik- (22)
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Hence,

dr(fv e, ® - ®e;,)) o e

afil...i[\ . o ; ,
= e P i+ S D WY i F O Tyt o)
’ i
(23)
and
o afiik
dfT,(fu.-uel.l®...®el.k)_ Py ,O,ayla,q ®.“®a-‘l,k
Y0 @ @ ()Y 0 + 0 B) @ ® Dy (24)
li

Now, it is easy to see that d= 7(K) is linear and that dT is a v, -derivation of order 0.

We can give another, more intrinsic, proof of the fact that d7 is a V- -derivation.

Let K e ®* (r) L e ®l(r) and let us consider K = (K)o ®*, L= (L) o ®, and
K'®L = K - L as functions on (x’,‘le*) xpm (x},). Since

dr(KL) = drKvrLl + viK dtL
(cf. [5]), we get
dr(KL) o (x*Me)=(d7K o (x*e))(viL o (x'e)) +(vTK o (x*e))(drL o (x'e))
and, in view of Lemma 1,
K ®L)= d3(K) ® v (L) + v (K) ® d3(L).

To prove the converse, we use the method similar to the method used in the proof that
derivations of C°°(M) are given by vector fields.

Let D : ®7 — ®(tg) be a v -derivation of degree zero. It follows that D : C*(M) —
C™(E) is also a v.-derivation. Consequently,

D(1) = D( - 1) = D(v(D) + v (1) D(1) = 2D(1) (25)

and D(1) =0

It is well known that for every mo € M we can find local coordinates (x“) in a neigh-
borhood U of mg, x%(mg) = 0, given by globally defined functions, such that for each
f € C>(M) we have

f(m) = fmo) + (x* f)(m)

form € U and some f, € C*°(M). It is clear that f,(mo) = (3f/3x7)(myp).
Lete € E, t(e) = mg. We have

(Df)(e) = D(f(mgp))(e) + D(x")(e)Vr(fa)(e) + Vg (xa)(e)D(fa)(e)
= fa(mo)D(x%)(e) =

(26)
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We can apply this argument to every point s € U and coordinates x“ — x“(m) and, since
D(x% — x“(m)) = D(x?), we obtain the local formula
af
ax(l

Let D(K) be linear for K € ®*(r). Then the functions D(x¢) are linear on fibers of E
and, consequently, we can write D(x?) = ,o;’ y/ for some functions ,ol‘f € C*(U), and

of :

D = —p%y/.
=5 ary

a

D(f)= D(x%). Q7

Let (e;) be a basis of local sections of E. We have, due to linearity of D(e;),
D(e;) = 0/ da + cf,. ¥ 9, (28)
where o', cj’f,. € C*°(U). Finally, the equality
D(f'ei) = D(f)ve(ei) + Ve (f) D(ei)
= %pj’yj dyi + flehiy 04 + flof O (29)

shows that, when restricted to functions and sections of E, the derivation D equals d% for
€ as in (8) when acting on functions and sections of E. But the v, -derivation D of order O
is uniquely determined by its values on functions and on sections of E. O

Theoremd. ForX,Y e ®'(1),

[vz(X), d3(1)] = v, ([X, Y]e). (30
Proof. Easy calculations in local coordinates. [

Corollary 1. For X € ®'(z) and Y € ® (), we have
[ve(X), d7(¥)] = v ([X, Y]¢)

and
[ve(Y), d3(X)] = v ([Y, X1¢),

where

[X.V1® - @N]l=) ¥i® QX Y]® -0
i

M® @Y XI=) Y@ 8, X]|® - ®Y

!

and the formulae for [ , 1. are similar.

Proof. The proof follows directly from Theorem 4 and from the fact that df is a
vy-derivation of order ). O
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The algebroid lift df may be used to an alternative definition of the bracket [ . ]. (cf.
[5] for the case of the canonical Lie algebroid in the tangent bundle).

Let X be a section of E. At points of X(M) C E, we have the decomposition of TE
into the horizontal (tangent to X (M)) and the vertical part. For a vector field V on E, we
denote by X *V the unique section of E such that the vertical lift v, (X*V) is, on X (M).
the vertical part of V.

Theorem 5. Let (E, ¢) be an algebroid and let X, Y € ®'(1). Then
X*(d?Y):[X. Yle. (3D)
Proof. We have to prove that the vector field d7(Y) —v: ([X, Y].) is tangentto X (M) C E.

Let X = fie;and Y = g'e;, in local coordinates, and let ¢ be as in (8). We have, according
to (10), (18), and (21),

d?(g"e/) —ve([flei, gfej]p) = C?/,‘"gja_\'A + 0}y “78_\* + Uiug Oya

ax
o 9gk afk
_cl’?j flgloy — ol f! Py o +o0/'g 5—)(78\.&
. ark
=og (ar“ + %—u—a_\.k) . (32)

since y' = f; on X (M). It is clear that the vector fields 3.« + (3f ky dx“)d,+ are tangent to
X(M). O

Let ¢ : T*E — TE* be a morphism of vector bundles over E*. The vector bundle dual
to tg« : TE* — E* can be identified (via R.) with the vector bundle T*r : T*E — E*
and vice versa. It follows that the dual to ¢ can be identified with a morphism

T T'E > TE". (33)

Theorem 6. Let ¢ be an algebroid structure as in (8). Then the morphism
et T*E — TE*,
dual to € with respect to the vector bundle structures over E * is again an algebroid structure

on E. The corresponding Leibniz tensor A+ is the transposition of the tensor A.. In local
coordinates,

(x &, %P &y oet = (x mi ol (Y Y T+ 0 () pa). (34)
Proof. The proof is an immediate consequence of the general properties of a dual to a

double vector bundle. We refer to [8,20] for the theory of duality in the category of double
vector bundles. O

It follows from the general theory of double vector bundles that (7)), = (e)*and (e 1), =
(g,)*. Thus, we have the diagram
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et

T*E y TE*

w‘ T w‘
T*r

E

id

(€c)

X*
/ ™ . (35)
E* E* /
T T T
S S e
d M

M 1

We call an algebroid structure (E, ) skew-symmetric if ¢ = —e™, where the multipli-
cation by —1 is with respect to the vector bundle structure over E*. It is clearly equivalent
to the fact that A, is skew-symmetric. Skew-symmetric algebroids are sometimes called
pre-Lie algebroids [7,11].

4. The tangent and cotangent lifts of an algebroid

The theory of the tangent and cotangent lifts of algebroids is perfectly analogous to that
of Lie algebroids (see [2,6]). If ¢ is an algebroid structure on t : £ — M and A, is the
corresponding Leibniz tensor on E*, the tangent lift dt(A,) is linear with respect to both
vector bundle structures on TE™ and, consequently, it defines algebroid structures on dual
bundles: T*E* — E* and TE — TM, called respectively the cotangent and tangent lift
of the algebroid ¢. Let us denote the corresponding double vector bundle morphisms by
T*¢ and T e, respectively. It is easy to prove the following theorem.

Theorem 7. The tangent Te and the cotangent T *¢ lifts of an algebroid structure € on
1 : E — M are defined by the following commutative diagram

T E %8, o1 e ORTr pequ g
TgJ TEJ T*EJ : (36)
TTE* XE ,77p* —d  q7pe

Proof. We have two commutative diagrams

T B T T*TE* B, TT* g*
R,J / and fRT,l T:R,J . 37
T*E T*TE —%E__,TT*E

It follows that the diagram
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Trrpr id ey B qpepe TAe o

fR’T{E.j' :RTTj‘ TRT} V (38)
R1ro0 fRTE.
_

T*T*E* T™*TE—%E _TT*E

is also commgative. All the mappings in this diagram respect three vector bundle structures
and, since dt A, = kg+» o T Az oaps (cf. [5]), we have T¢, 7*¢ as in the diagram (36), and
the corresponding double vector bundle morphisms:

T*TE Te TTE*
i W TTE- w‘ﬂ'
s Kpf © TEr
TE s TTM
: / (39)
TE* id yTE* T
T™ id ™
and
*
T*T* E* T*e TTE*
T T e Xp
TEs= ~
E T* E* A
TE* id TE
TR /TE-
E* 1d
(40)

We see from these diagrams, that (7€), = «kp 0 Te, and (T*¢), = 71: We have also
(Te)e =Tecoay!, (T*e)e=A, O (41)

Theorem 8. Let ¢ be an algebroid structure on t : E — M. The following properties of
¢ are equivalent

(a) ¢ is a Lie algebroid structure,

(b) A is a Poisson tensor,

(¢) Ag and dy A, are e-related,

(d) The following diagram is commutative (on the domain of the relation T*¢):
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TT*E A prreg

W

TTE* T*TE*

-1
] S

TTE* « 16 T1p IR

’ (42)

T TT*E*
(€) d5([X, Y1) = [d5(X), d5(V)] forall X, Y € ®'(2).

Proof. (a)<=(b) by the definition of a Lie algebroid.

(b)ye==(c)<=(d) is a version of Theorems 4.4 and 4.5 from [5]: a Leibniz tensor A is
a Poisson tensor on a manifold N if and only if Ay and — d1 A are A-related.

Finally, (¢c)<=(e), since

e ([d5(X), d5(N)]) = {1d5(X), 1d5 (V) ay = {dT((X) 0 &, dT((Y)) 0 )4,
which equals

{d7((X)), dT((Y))apa, o€
= dr({t(X), (1)) a,) 0 £dT((X, Y]o) 0 & = L(d§((X, Y1)

if and only if Ag and dtA; are e-related. O

5. The Lie and exterior derivatives

Let (E, £) be an algebroid, X € ®' (1), n € ®' (). Since d-ﬁ-(X) is a linear vector field
on E, d7(¢(u)) is a linear function on E. The corresponding section of E* we call the Lie
derivative of i along X and denote £5 (1), i.e.,

HLY (W) = T Ww)). (A)

In local coordinates,

: b Ok : af '
Ly, (wjen) = flo) s ei + (f’cf,- + o2 h ) e (B)

It is easy to see that
Y(fw) =Ly +a; (X)(f) - u ©
and

Lox (W) = fL(W) + (X, w) dy (f), (D)
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where the left derivative d(f) € ®!(7r) is defined by
(di(f),Y)=(df.af(V)), Y e ®' ().
Similarly, we can define the right derivative
(di(f).Y)=(df.af (1)), Y €®' (7).

We have clearly
dr(fe) = fdi(e) + g di(f) (E)

and the analog identity for the left derivative.

Theorem 9. For every X € @' (1) there is a unique derivative LS of the tensor algebra
(1), called the Lie derivative along X, such that
@) LY(f) =al(X)(f) = (X, d{ f) for [ € C=(M),
(b) (L5 (p)) = dp(X)(e(w)) for u € ®' (),
(©) L5(Y) = —[Y, X]. forY € ®' ().
Moreover,
(d) E_?-X(K) = fLS(K) + idf(f)@,\/(K)for f e C*¥M)and K € 3(1).

Proof. Any derivative of the tensor algebra T(t) is uniquely determined by its values on
functions and sections of £ and E™. On the other hand, it is easy to see that the identities

LA )= L) g+ f L5,  L5(fm)=LY(HHu+ fFL0).
and 43)
L fY) = LS(NY + FLY(Y),

for f,g € C(M), u € @' (7), Y € ®'(r), which follow from (C), (E), and the properties
of [ . ], are sufficient to extend L to a derivation of the tensor algebra

CAI® - ®A) =D AI® - ®LY(A)® - X AL
i

It remains to prove (d). Since ig:(y)@x is also a derivation, it is sufficient to check (d) on
functions and sections of E and E*. On functions ig:( s)gx acts trivially and (d) follows

from (a). For 4 C ®' (1), we have id;(f)®xﬂ = (X, n) di‘(f) and (d) follows from (D).
Finally,

g nex(Y) = —af(Y)N(f)- X =—[Y. fX]. + fIY. X
forY € ®' (1) and (d) follows from (c).

Remark. (A) was introduced in [16] as the definition of dfi-( X) for ¢ being a Lie algebroid
structure.
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Theorem 10. Ler ®' (1) 3 X — Lx € Der(®(m)) be a linear mapping assigning to each
section of E a derivative of the tensor algebra Q(r). Then Lx = L5 for an algebroid
structure € on E ifand only if Lrx = fLx +iq,5)@x for a derivation d; : C* (M) >
®' (7).

Proof. The ‘only if” part follows from the previous theorem. To prove the ‘if” part, we can
start with the identity

H(Lxpu) =DX) ()

to define a lift D(X) of X to a tangent vector field on E, and to show that this lift is of the
form d.
We can also find directly the bracket [ , ]. as follows. First, since

(xLy — Lyix)(fu) = f (ixLy — Lyix) (u),

there is an element [X, Y] € ®'(z) such that ix £y — Lyix = tix,v]- The bracket [, ]is
bilinear and

(rxLey — Lgyirx) = fglixLyLyix) + fixidger — gLy (f) - tx,

which shows that [ , ]is an algebroid bracket with the left anchor defined by a;(X)(g) =
(X, dig) and the right anchor defined by a,(Y)(f) = Ly (f). The right anchor is really
tensorial with respect to Y, since

Ley(f) =8gLy(f) +igeerf =gLy(f).

Hence,[ , 1=1[, I foran algebroid structure ¢ and it is easy to see that Ly = L. O

We have already defined the right and the left exterior derivatives
£ df i C®(M) - ®'(1)
with the property
Ly(f) =ixdif + diixf, feC(M). (44)

In general, for £ which is not skew-symmetric, it is not true that £5, = iy d® + d°iy for
some exterior derivative d° even on the Grassman algebra @ (7). However, we can always
find

d, & 1 ®'(1) > ®*(n)
such that
Lsu — diixp = ik dip = —ig( T

We have, in local coordinates,

o e 3 ,
a2 (frek) = cfjfkei ® e, +of 8){]‘(‘ el ®ek —of 3)}:]; e,

45
de(fek)___kfei®ej_o.aafkek® i+ a%i k ( )
(k€)= =CjjJies @ & — 0j g€, @€, T 0 axae*®e*.
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It follows also that
di(fu)y= fdiw) + & (H®u—u® d (f),
di(fu) = fdj(w) + di(H @ u—pu® di(f).

and & = d°.
The following theorem is the general algebroid version of Theorem 15 (d) of [6].

(46)

Theorem 11. There is a unique derivation d; : ®'(r) > ®2() such thar
Lyp = dixp—iyxdin, ue®'(m), X e®' ().
Moreover,

Vr (d]F,U«) = —l:v'_r(ﬂ)Ae.

Proof. We have

: : 3fi L Ofi
Vo (& (fieeh)) = —ck; fude, ® B, — of gfaask ® B, + pf aff,

=Ly, (ijékag,- ® 3, + p; 35, ® Bye — 0 e B ;)
=Ly, A" O

35; ® aEk

Remark. It is well known that for skew-symmetric ¢ we have df = df = d° and, con-
sequently, it can be extended to a derivation d° of the Grassman algebra @ (;r) [11]. Then,
d® o d®* = 0 if and only if A® is Poisson, i.e., ¢ is a Lie algebroid structure.

6. Bialgebroids

Let & and € be algebroid structuresonbundles t : E — M andz : E* — M respectively.
Following the ideas of Xu and Mackenzie [15, Theorem 6.2], we call the pair (¢,%) a
bialgebroid if ¢, regarded as a vector bundle morphism

™" —& L TE*
”EJ Tw} , (47)
E—5 ,Tm

is a morphism of algebroids 7*¢ and 7€, the cotangent and the tangent lifts of the algebroid
Z. This means exactly that the dual relation £* between the corresponding dual bundles

*
TE «—&—TE
TEJ T‘rl ; (48)

E— T »TM
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is a Leibniz relation between the Leibniz tensors dtA; on both sides, i.e., this relation is a
coisotropic submanifold of TE x TE with respect to the Leibniz tensor dtA; % (— d1A45z).
Let us assume that, in local coordinates, £ has the form (8) and

Az = E‘,;jy"'a),,- X 3),j + ,51"‘35‘. ® 3xh — 8’“1 Ove ® 3},1'. 49)

It is easy to calculate that

o/ s K ok ap™*
dr(Az) = 8”yx +ayky 8‘,®8‘,+a X985 ® 8y

30’“-’ k
x a‘ftl ®a\j +C1\ y (a‘l ®a‘/ +a\l ®a‘l)

+;f”(a_\»,,- ® dp + 8y ® 8;6) — 0 (050 ® Dy + 0ps ® D)) (50)
and that the relation &* in TE x TE with coordinates (x?, y', i%, v/, ¢, 5 ", ' ) is
defined by equations

Fl=x‘-x"=0, Ff =i — ol ()7 =0,

L / - o ~ - (51)
=y —chxy'F =3, Ff=x"—plxy =0

The equations define a coisotropic submanifold N with respect to A = (—dtAz) x drA;
if and only if the Leibniz bracket of the functions (51) vanish on N. The Hamiltonian vector
fields corresponding to these functions are the following (we make use of the fact that x¢
and x¢ are equal on N):

a_~aj(3\1 +3 J)

b
~aj 3Uk k g a=l au_ —Ebja,j +U vl yka +a’b~m3_u
oxa” dx4a » k
_.apl aobi
( aj "k k k Iolb’c‘;;(]yk> a +U a‘J + o ,ola‘ylaJ _,0, "‘laa_u

~j[
ac!
il ~
( oty + ey + 2l +0‘”3’§y’yk clailys vk) 3y
+

e apib Lo
(3 iy S+ + c’k'c""y’y‘> By + ( o - Z)”bCZkyk) dz

ap’ ~kb ~ji k ~jb ~ji ok ~jb
+ ( Py Py + prlel, 5 9 + ' Y 0y + 5708 + T 05 + 508

(52)

One can easily see that Fij commute, with respectto { , }4, with all defining functions, so
that we have three types of functions left. Moreover, X Zl’ (Fy=0,X é’ (F. _{’) = (0 and we get
the following seven non-trivial equations defining bialgebroids, corresponding, respectively,



J. Grabowski, P. Urbariski/Journal of Geometry and Physics 31 (1999) 111-141 131
to X} (F§) = 0, X5(F{) = 0, X(F{) = 0, XJ(F}) = 0, X}(F)) = 0, XJ(F§) = 0.and
X (F) =0.

Theorem 12. The tensors A, and A; as in (9) and (49) constitute a bialgebroid structure
if and only if the following equations are satisfied.:

(1 ol + 5" pf =0,

(2) ,O,hN'“ + 5”0 =0,

3) gftl A Bacj;f P — Ei’p!’ — C/{,O'“ =0,

4) _zij"ka + %’lgq," - Ejfiai" - cfjﬁk" =0,

%) %N‘” Ziij : cr,ijah + CIAUZ =0,

O i P G o

et e S Bt e
—E',t[cj - c"c/\A — C,{‘C[ =0.

Corollary 2. The pair (g, ) constitutes a bialgebroid if and only if (€, €) constitutes a
bialgebroid.

Proof. The family of equations (1)—(7) does not change when we interchange ‘tilde’ with
‘notilde’. O

The original definition of a Lie bialgebroid by Mackenzie and Xu [15] was given in terms
ct exterior derivatives and Lie brackets. In the case of a general algebroid we have a slight
substitute of the exterior derivative only, but it is enough to get the full analogy.

Theorem 13. A pair (¢, %) of algebroid structures on E and E*, respectively, constitutes
a bialgebroid if and only if

&[X. Y] = [di X, Y] + [X, & Y], (53)

for all X,Y € ®'(1), where the brackets (‘the Schouten brackets’) are defined by the
formulae

(X®Y.Z), =[X,Z], Y + X ® [V, Z]..

(54)
X.Y®Z],=[2,X].®Y+XQ®I[Z,Y]..
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Proof. We shall show, in local coordinates, that (53) is equivalent to Egs. (1)—~(7). To reduce
the problem to the case X = ¢;, Y = ¢;, we find the relation of (53) with the structure of
C>®(M)-module in ®' (7). Replacing in (53) Y by fY we get
(X, 1Y + fIX. Y1) =[df X, FE®Y + Y ®[d] X, f1} + fId X, Y1,
X, fEY + EH Y - ¥ ® d (). (55)
(We use the following conventions: [X, fl. = af (X)(f), [f, X] = —af(X)(f), [X ®
Y, fI2=1Y, fl X, [X®Y, fl} =X, f1cY, etc.). We get furtherly
(X, fle &Y + dE(X, fl) @Y — ¥ ® d[X, fls + f df[X, Y],
+&E () ®IX, Y] — [X, Y1 ® di(f)
=X, fle &Y + f[X, & Y] + [X, () ® Y + & (/) ®[X. Y],
—[X. Y] ® di(f) - ¥ ® X, di(N)le
+IEX, FROY +Y ® X, f1L + fId X, Y], (56)
and, finally,

FFIX, Y], — [EX, Y] — [X, d Y]
=Y ® (d[X, flo + [d X, f1! - [X, ()]

— (df[X, fle — & X, I - [X, d{(NH]) ®Y. (57)

This shows that (53) with Y = ¢; is equivalent to equations
diX, fle + [ X, f1} — [X, dE()]e =0, (a)
&1X, fle — [d X, fIF = [X, &} ()] =0, (b)

where X € ®!(z) and f € C®(M).
We reduce (a) and (b) once more, this time with respect to X. Let us put g X instead of
X. We get from (a)

df gX. f1o) + [gdf X + dfg ® X — X ® dig. 1!
—g[X, dE(N — [g, E(HLX =0. (58)

Hence,

gE[X, fle + [ X, £} — [X, dE(P)l) + (dfg. f1e — [g. dE fl)X =0,
which shows that (a) is equivalent to

[df (8). f1e — [8. dE()]e =0, )

dilei. fle + [de;, f1} — [e;, d()]. = 0. (d)
Similarly, (b) is equivalent to

[d(g), f1. — g, df1. =0, ()
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diler, fle +[die; - 17 = [ei, df (] =0. (d)

Relaxing now the C°(M)-module structure in (53) with respect to X, we get
analogously

LY+ [f, EYI + (), Y] =0, (e)
dLf, Y] = [f, &Y —[d (), Y] =0, (f)

which are equivalent to (c), (¢/) and (e), (f) with ¥ = ;. Finally, in local basis, (53) is
equivalent to the system of equations

(1 [di(g), fle — [g, dE ()] =0,
(2') [df (2), f1e — [g, ()] =0,

(3 dilei, f1e + [dfer, f1 = [er, dE(P)1 = 0.
@) diLf. eile — [df (). eile — [f. dfei]? =0,
(5 diLf, eile + [dE(), ei)e + [ f. diej]l =0,
(6" dflei, £l — [diei. 12— e df ()] =0,
(7" dilei. ej]e + [di ei. €] — [e;, die;l, = 0.

Now, it is a direct check that these equations are equivalent to the system of equations
(H-(7. O

A canonical example of a bialgebroid is given by the following theorem.

Theorem 14. Let € be a Lie algebroid structure on v : E — M and let A € ®>(1). Let
€ be the algebroid structure on E* which corresponds to the linear Leibniz structure d7 A
on E. Then the pair (¢, ?) is a bialgebroid.

Proof. From Theorem 11 we get
ve(df X) = —[ve(X), d5A] = —v, (IX, Al.),

where we used a formula from Corollary 1. It follows that de = —[X, Al. and (53) reads
now

[([X.Y]e, Al =[[X, Als, Y] + [X. [V, Alc ],

which easily follows from the Jacobi identity for [ , ]J,. B

Remark. A standard example of a situation as above is provided by the Lie bialgebroid
induced by a Poisson structure on a manifold (cf. [11,15]). Moreover, the above theorem
shows that a bialgebroid may be constituted by a Lie algebroid and an algebroid which is
not even skew-symmetric.
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Example. An extreme case are bialgebroids over a single point. It means exactly that we
have algebra structures [ , Jand [ , ] on a finite-dimensional vector space E and on its
dual E* respectively. (An algebra structure on E is abilinear operation[ , |: EXE — E.)
They form a bialgebroid (or, simply, bialgebra) if and only if

d[X,Y]=[d'X, Y]+ [X, dY]

forall X,Y € E,where d’ : E — E @ Eisthedualmapto[ , |': E*® E* - E*.In
the case of Lie algebra we recognize the definition of a Lie bialgebra.

7. The algebroid of a linear connection on TM

Important examples of algebroids which are not skew-symmetric are provided by lin-
ear connections on a tangent bundle. Let a linear connection be given on TM. It can be
represented by the covariant derivative

(X,Y) > VyY, X, Y e ®'(tm) (59)

or, equivalently, by the horizontal projection

P:TIM > TTM

or by the vertical projection

P,:TTM > TTM.

The linearity of the connection implies that P, P, are double vector bundle morphisms.
Let (x9, %%, x'°, ¥’%) be a coordinate system on TTM. We have

(x4, 17, x', "%y o Py = (x°, %", 0, 8! + I () 1x"),

(x%, %P, X' %) 0 Py = (x4, 3P, x'C, =T 0)x9x'"), (60)
Y« , a 3
VxY¥=—Xx" 4ybxe_—.
X axP ™ 9xa tia axa

Theorem 15. There is a unique algebroid structure € on TM such that

L5Y = VxY. (61)

For this algebroid a; = id, aj = 0.
Conversely, any algebroid structure (TM, ¢) such that a; =id, a] = 0 is the algebroid
of a linear connection on TM

Proof. We define a bracket [ , ]. of vector fields by the formula

[X,Y]. = —VyX. (62)
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It is obvious that it satisfies the condition (10) with af = id and af =0

[fX.gYle=—Ver(fX)=—gfVyX —gY(NHX
=gf[X, Y] —gY(NHX
= ¢f[X. Y] - ga’ (Y)(F)X + faf (X)(g)Y.

To prove the converse it is enough to notice that af = id. a; = 0 implies the following
formof e : T*TM — TT*M:

/

(x“, pp, X, pa) 0 € = (x4, 7., 0, fq — F(;l/,x ") (63)

where (x“, x”, f., m4) are coordinates in T*TM. O

Let Py, be the horizontal projection of a linear connection. The formula
Pﬁ:KMOP/,oKM (64)

defines the horizontal lift of the transposed linear connection on TM. The connection is
called symmetric if it is equal to the transposed connection, i.e., if P, = Pﬁ.

It is well known that for each linear connection on TM with the covariant deriva-
tive V there exists the dual connection on T* M, with the covariant derivative VT, such
that

X(, ¥Y) = (Vip, ¥) + (n. VxY), pe®'(tu), X.Y €@ (ty).

Theorem 16. Let (TM, £) be the algebroid structure of a linear connection with the

horizontal projection Py. The following relations are satisfied:

(@) e = (P oem, whereey = a;,,l is the canonical algebroid on TM and (P')] is the
vertical projection of the dual to the transposed connection,

(b) /TF = (Pt)j o /’\74 where Ay is the canonical Poisson tensor on T*M,

(¢c) df = Pyo dr, ie, d7 is the horizontal lift,

(d) Ly = Vyuforpne® (au),

(e) di f = df, dj f =0for f € C=(M),

(f) dip = Vtuforpue® (my)

Proof.
(a) In local coordinates,

(x, pp. X5, pa) o (PYT = (x*, pp, 0, pg — (T4 pax?)
= (x, pp, 0. pg — Iy pax”). (65)
(X, pp, %€, pa) o (PYT o ey = (x5, 0. fu — Tffymat®)

and the equality follows from (63).
(b) We have from (a)

Ap =£0Rey = (PYF 06p 0 Rey = (P 0 An. (66)
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(c) It follows from the formula (21) that
do(X) = X%Bpa — [55°X 00 = Py(X8y0)

a

X
5 x”ax-a) = Pyo drX. (67)

=P, (Xaaxu +
(d) By the definition of the Lie derivative,
ULy () = dTX () = (Py o drX) (). (68)
Since (i) = pyx? and P, o d7X = X%0ya — FcbbeCaxu we get
ou
(Pho dTX)(u(w)) = a— — F4x" X p, (69)
and, consequently,
flu) = X“d b TaxXp,d” =vipu.
© (dﬁ(f),X)=af(X)(f)=X(f)=(df,x),
di(f), X)=a X)(f) =

(f) It follows from the definition of the exterior derivatives and from (d) that

(70)

iy de =L5u— dfiX;L:.Ci;L:V;u:i}(VﬂL. ]

8. Metric connections

In this section we give an interpretation of the Levi-Civita connection in terms of
algebroids. Let g be a contravariant metric tensor on M and let g : T*M — TM be
the corresponding isomorphism of vector bundles. The tensor dtg on TM is linear and
defines an algebroid (T*M, ¢), i.e., A, = dtg. Inlocal coordinates,

8 = gabaX“ ® dyh,

P ab
drg = A, = g - X0 ® 0b +g”b(3x" ® 0 + 030 ® 3,p), (71)
agh B v,
[, v]e = agcuaw]dx +g° (a Vb + Ha a57 ,,) dx€.

It follows that af = g and a; = —%.
Since g is an isomorphism, g, ! A is a linear Leibniz structure on T*M. It defines an
algebroid on TM with the bracket

[X, Yl =2 ' X, 87'YD). (72)
The left anchor is a] ¢ ) = id, the right anchor is a’

algebroid bracket are given by the formulae

axe are a d a
(X, Y]e(g))a Yb + —X +g b( 8bc + Sbd _ gcd) XCYd~ (73)

8 _ _id, and coordinates of the

dxb axb x4 dx< dxb
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The formula
1 ~—1
Ae, = 7(Ay — g, d18) (74)

defines then an algebroid structure (T, ¢,) with the anchors af“ =id, alp *=0,ie.,(TM. &)
is the algebroid of a linear connection on TM. The covariant derivative of this connection
is given by the formula

VY =—[Y, XI;, = 3(IX, Y1+ [V, X))

3Y“ 1 ogpe 0 ag. :
X B + = 2 ab( 8bc + 8bd _ g(d>X( Y‘Ia\-u. (75)

x4 ax¢ axb

We recognize VyY as a covariant derivative with respect to the Levi-Civita connection of
the metric g.

9. Lifting processes on differentiable groupoids

In [16] a procedure of lifting of multiplicative vector fields on Lie groupoids is described.
This procedure, what the authors admit implicitly, has nothing to do with the whole groupoid
structure, but rather with the structure of a fibration only. In other words, it is just the standard
complete lift procedure, but applied to specific vector fields. The general scheme is based
on the following theorem.

Theorem 17. Ifa : P — Bisafibration, y : B — P isits section, and X is a projectable
vector field on P, tangent to y ( B), then the complete lift dvX is avectorfieldonT P, tangent
to the subbundle E C T, g, P of a-vertical vectors.

Proof. In a neighborhood of a point p € ¥ (B), we can choose coordinates (x, f') such
that (x) are coordinates near ¢(p) € B and (f') are coordinates in fibers, vanishing on
y(B).

Let us write

X(x. f) = g"(x)dw +h'(x, /)3y,
where A (x, 0) = 0. Thus

dTX = g9 (x)dy« b3, +h"(x, a

7f)“\.’aafi (X f)f a/l

ahn'
af/
The subbundle E C TP is described by the conditions ¥ = 0, f' = 0, so that dTX is
clearly tangent to E and

d a on /3 O
TX|E = g% (x)0xe + W(x,o)f fie
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What we use to lift multiplicative vector fields on a Lie groupoid «, 8 : G« B to vector
fields on the bundle A(G) of the corresponding Lie algebroid is only the «-fibration structure
over the base B and the fact that multiplicative vector fields have the desired properties (are
star-vectors in the terminology of [16]).

On the other hand, one can use the above lift to obtain the lift d5 for the corresponding
Lie algebroid. This lift for sections of A(G) was introduced in [16] by the formula

TX(p) = ULYp) (76)

(cf. Theorem 9). Since we want to present this procedure in the whole generality, we have
to start with a more general object than a Lie groupoid.

A pre-Lie groupoid is, roughly speaking, an object we obtain by relaxing the associativity
condition in the definition of a Lie groupoid. Having submersions «, 8 : G — B onto the
manifold B of units and the inclusion map ¢ : B — G, we define the vector bundle
7 : A(G) — B as usual, to be the inverse image of the vertical bundle V¥*G — G across
the embedding e : B — G. We shall consider, for simplicity, B to be just a submanifold
of G, so that A(G) = V7 G. Starting with a section X : B — A(G) C TG, we define the
right and left prolongations of X to a vector field on G

X = T(R)X(Bg) and X = T(L)T ()X (ag), (77

where Rg, L, are the right and left translations, and i : G — G is the inverse mapping.
Now, we define a bracket on sections of A(G) putting

[X.Y](p) =[X. Y 1p) (78)

for p € B. Let us note that X and X are no longer invariant vector fields, since the

pre-groupoid product is not assumed to be associative. Hence, the bracket [ X , Y ] is no
longer the right-prolongation of any element of ®' (). On the other hand, the definition
(78) makes sense and we have the following.

Theorem 18. The bracket [ , 1. defines a skew-symmetric algebroid structure on the
bundle T : A(G) — B with the anchor

a:A(G)— TB, a=T8lac-
Proof. The bracket [ , ]. is obviously skew-symmetric and, for f € C>°(B), we have

(X, fYl(p)=[X1 F¥(p) =[X.(fo BT 1(p)
=fBENX1L.YIp) + X (fo B Y (p)
= fIX. Y1.(p) + (TBCXN (N PY(p). O

Theorem 19. The vector field X = X + X projects to a(X) under both projections, o
and B, and it is tangent to B-regarded as a submanifold of G.
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Proof. No difference with respect to the classical case. Let us mention only, that in the

Asd
pre-algebroid case the vector field X is, in general, no longer multiplicative. This shows
that the multiplicativity is not essential for the lifting procedures. O

Corollary 3. The vector field d1X is tangent to the submanifold A(G) of TG.

Let us denote d1X|4(q) by dTG- X — the pre-Lie groupoid lift of a section X of A(G).

Theorem 20. For each section X € ®' A(G), we have
df X = dbx.
Proof. Since the setof functions {t (i) : u € ®l(rr)}, where 7 : A*(G) — B is the bundle

dual to 7, is a complete set of functions almost everywhere on A(G), it is sufficient. in view
of (76), to prove the equality

49X (1) = «Lyp) forall u € ®'(m).
ie.,
dFX () oY =a(X){pu. V) — (. [X, Y1) (79)

forall u € ®'(1), X, Y € ®'(1).
We can find (at least locally) a function f on G vanishing on B and such that df
represents [, i.e., (i, ¥y = (df|p, Y). We have,

dFX () o ¥ = (d7X, di(w) o ¥ = (drX. drdf)o¥ = dr(X. df) o ¥
= (Y. d(X. df)ly
- < - <« © -
= Y (X, dfDla = ((F . X1 df) + XY df))ls

- =
=([Y, X,df)s+a(X){Y. n
=a(X)(Y, pu) — (u. [X, Y]e) = (Y. Lu).

—

— (X, df) o ¥ = (d(X, df),Y)

- . .
Here we used the fact that [ ¥, X |p = 0. In general, the left and right prolongations do
not commute as in the case of Lie groupoids, but they commute on B, and it is sufficient
for our purposes. [

It is clear that relaxing the associativity assumption we get skew-algebroids as introduced
in Section 1 which are no longer Lie algebroids.

Example. Let V be a vector space andlet D : V x V — V be a skew-symmetric, bi-linear
mapping. We define a pre-Lie group structure on V (a pre-Lie grupoid over a single point)
as follows. Let X » Y be the pre-group product given by

X«Y=X+Y+DX,Y)
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Itis clear that O is the unit element and X +— —X is the inverse mapping. A(V) is canonically
identified with V. We have the following formulae for prolongations:

X @) =X+DX.2), X2 =-X+DX. 2,
and we obtain the bracket
- =
X, Yl =[X] Y (0 =2D(X,Y).

It is easy to see that this bracket satisfies the Jacobi identity if and only if ‘x’ is associative.

Also the vector field X(Z) = 2D(X, Z) is multiplicative if and only if ‘x’ is associative.

In the above considerations concerning pre-Lie groupoids we implicitly assumed that
the product giq> exists if and only if 8(q1) = «@(q2). However, relaxing the associativity
assumption, we should probably change also this axiom as shown in the following example.

Example. Suppose that in a Lie group D we have chosen a Lie subgroup G and a ‘com-
plementary’ submanifold such that

() eeMand M~ = M,

(2) the composition G x M 3> (g, u) + gu € D is a diffeomorphism,

(3) foreachpairu, v € M there is aunique g € G, denoted by ¢(u, v), such thatugv € M.
We denote the element ug(u, v)v by u x v.

For a given subgroup G one can find such a triple (D, M, G), at least locally, putting
M = expm, where m is a complementary subspace to the Lie algebra g of G in the Lie
algebra b of D. The reader easily recognizes some similarities with double Lie groups (e.g. if
M is a subgroup) and quasi-Poisson Lie groups (cf. [9] and the concept of quasi-triple in [1]).

Since every element d € D has unique decompositions d = gu = vh, where g, h € G
andu,v € M, we shall writed = (g, u, v, h). We have obvious projections, 8 : D — G,

al(g,u,v,h) =g, P(g,u,v,h)=nh.
Now, we define a partial product in D defined for pairs
di = (g1, ui,vi, hy),  dr = (g2, u2, v2, h2)
such that
Bd)(ur, uz) = (i, v2)a(dz)
by
dyody = (g1, u) *uz, v) *xv2, h2).
This definition is correct, because

g1(u1 *u2) =grurpy, u)uz = vihi@(uy, uz)uz

= vV, V2)q2ur = vi@(v], V))V2hy = (U] * V2)h>.
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Moreover, a(di o d2) = a(d)) and B(d; o d>) = B(d>). Of course, this partial operation is
not associative unless the »-product is not associative. It is easy to see that elements d =
(g.e,e g),le,d =g € G, form the set of units and that every element d = (g, u, v, k)
has the inverse i (d) = (h, u~ L g).If M is also a subgroup, then what we get is exactly
the Lie groupoid of the double group.

The question what are the algebroids being the infinitesimal versions of such structures
we postpone to a separate paper.
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